Properties

Degree 1
Conductor 229
Sign $-0.930 + 0.365i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.614 + 0.789i)2-s + (0.945 + 0.324i)3-s + (−0.245 + 0.969i)4-s + (−0.546 + 0.837i)5-s + (0.324 + 0.945i)6-s + (0.735 + 0.677i)7-s + (−0.915 + 0.401i)8-s + (0.789 + 0.614i)9-s + (−0.996 + 0.0825i)10-s + (0.986 − 0.164i)11-s + (−0.546 + 0.837i)12-s + (0.837 + 0.546i)13-s + (−0.0825 + 0.996i)14-s + (−0.789 + 0.614i)15-s + (−0.879 − 0.475i)16-s + (0.546 − 0.837i)17-s + ⋯
L(s,χ)  = 1  + (0.614 + 0.789i)2-s + (0.945 + 0.324i)3-s + (−0.245 + 0.969i)4-s + (−0.546 + 0.837i)5-s + (0.324 + 0.945i)6-s + (0.735 + 0.677i)7-s + (−0.915 + 0.401i)8-s + (0.789 + 0.614i)9-s + (−0.996 + 0.0825i)10-s + (0.986 − 0.164i)11-s + (−0.546 + 0.837i)12-s + (0.837 + 0.546i)13-s + (−0.0825 + 0.996i)14-s + (−0.789 + 0.614i)15-s + (−0.879 − 0.475i)16-s + (0.546 − 0.837i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 229 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (-0.930 + 0.365i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 229 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (-0.930 + 0.365i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(229\)
\( \varepsilon \)  =  $-0.930 + 0.365i$
motivic weight  =  \(0\)
character  :  $\chi_{229} (177, \cdot )$
Sato-Tate  :  $\mu(76)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 229,\ (1:\ ),\ -0.930 + 0.365i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.6983256800 + 3.686414959i$
$L(\frac12,\chi)$  $\approx$  $0.6983256800 + 3.686414959i$
$L(\chi,1)$  $\approx$  1.325260209 + 1.571497185i
$L(1,\chi)$  $\approx$  1.325260209 + 1.571497185i

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−25.580718068148825714268514895852, −24.449337898043887378401465316663, −23.938268863328340558978402165736, −23.11950085294710665567408288567, −21.74018910459864240032561832116, −20.82383894072114569871044430491, −19.98979708786888966547175342388, −19.800436142372053815302097112094, −18.50328411469630664389243922473, −17.44437541234093530156484221026, −15.9443727539384874643310373812, −14.91683451953057538235914235584, −14.09366721098991259668266363346, −13.24655033523551422439499365459, −12.35535553315515017728689597000, −11.4358601630122642480134010271, −10.21793587994124069708333869852, −9.00389792750985601460451709108, −8.21517263221918107250965181580, −6.925941587276886542246230671596, −5.312799490268040406611056458639, −4.03614201600572887250910127065, −3.52445140315355209299337163643, −1.68011810780745770238686785102, −0.99314182253582732530130007195, 2.105249795409076575681458308906, 3.48674351451583502838529192656, 4.08794074621974456722302409942, 5.5573059655227872923531071779, 6.816476342287124017228595323, 7.85609865178377822618731325178, 8.57447558724299762251027504411, 9.71745326315519545419976002471, 11.4161741387893112995611597568, 12.05727669379593738833537256815, 13.77373723382384459983227932330, 14.216567666548098905589051746932, 15.0509157506100224960813578197, 15.78022945989149627536111350979, 16.75582363381928634452397930044, 18.35378088502660181104468818272, 18.76040343594886966798922353992, 20.27506688125594125041689265086, 21.0946997835425549170580872096, 22.049536250389949542685630565710, 22.71608285634270282432090873721, 23.97644625509057845877099142378, 24.74690692865486533202916678014, 25.5579534999849699521969315407, 26.36898294221623403889828261470

Graph of the $Z$-function along the critical line