Properties

Label 1-212-212.211-r1-0-0
Degree $1$
Conductor $212$
Sign $1$
Analytic cond. $22.7825$
Root an. cond. $22.7825$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 7-s + 9-s − 11-s + 13-s − 15-s + 17-s + 19-s − 21-s + 23-s + 25-s + 27-s + 29-s + 31-s − 33-s + 35-s + 37-s + 39-s − 41-s − 43-s − 45-s − 47-s + 49-s + 51-s + 55-s + 57-s + ⋯
L(s)  = 1  + 3-s − 5-s − 7-s + 9-s − 11-s + 13-s − 15-s + 17-s + 19-s − 21-s + 23-s + 25-s + 27-s + 29-s + 31-s − 33-s + 35-s + 37-s + 39-s − 41-s − 43-s − 45-s − 47-s + 49-s + 51-s + 55-s + 57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 212 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 212 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(212\)    =    \(2^{2} \cdot 53\)
Sign: $1$
Analytic conductor: \(22.7825\)
Root analytic conductor: \(22.7825\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{212} (211, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 212,\ (1:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.126906898\)
\(L(\frac12)\) \(\approx\) \(2.126906898\)
\(L(1)\) \(\approx\) \(1.294592815\)
\(L(1)\) \(\approx\) \(1.294592815\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
53 \( 1 \)
good3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 + T \)
17 \( 1 + T \)
19 \( 1 + T \)
23 \( 1 + T \)
29 \( 1 + T \)
31 \( 1 + T \)
37 \( 1 + T \)
41 \( 1 - T \)
43 \( 1 - T \)
47 \( 1 - T \)
59 \( 1 - T \)
61 \( 1 - T \)
67 \( 1 + T \)
71 \( 1 + T \)
73 \( 1 - T \)
79 \( 1 + T \)
83 \( 1 + T \)
89 \( 1 + T \)
97 \( 1 + T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−26.390663462306605590031068774570, −25.62608894054707535733870315909, −24.73246118714555409950848693577, −23.4388269693920718012640105169, −23.01040643286516072997691409734, −21.535436083192605593337740889217, −20.60693619532594576256785494368, −19.82740498422471832989044028388, −18.89298562309205407819976190181, −18.38167651869668003808851396485, −16.451811720935146498179950645840, −15.79118775834226500206720231731, −15.090825317729664152619400229993, −13.75905084664617123156775030985, −12.99969416797668501157150010651, −11.97311222866284347670039451412, −10.57244473138611978037365967536, −9.602436850505155260130549297122, −8.41125982231489015252954310901, −7.68126416406476464507205425000, −6.55847484596472293794186017645, −4.87782714922705169058444728020, −3.43910389946598120108000679950, −2.97908316809539758440028916145, −0.93571552954413905515698748295, 0.93571552954413905515698748295, 2.97908316809539758440028916145, 3.43910389946598120108000679950, 4.87782714922705169058444728020, 6.55847484596472293794186017645, 7.68126416406476464507205425000, 8.41125982231489015252954310901, 9.602436850505155260130549297122, 10.57244473138611978037365967536, 11.97311222866284347670039451412, 12.99969416797668501157150010651, 13.75905084664617123156775030985, 15.090825317729664152619400229993, 15.79118775834226500206720231731, 16.451811720935146498179950645840, 18.38167651869668003808851396485, 18.89298562309205407819976190181, 19.82740498422471832989044028388, 20.60693619532594576256785494368, 21.535436083192605593337740889217, 23.01040643286516072997691409734, 23.4388269693920718012640105169, 24.73246118714555409950848693577, 25.62608894054707535733870315909, 26.390663462306605590031068774570

Graph of the $Z$-function along the critical line