Properties

Label 1-2011-2011.2010-r1-0-0
Degree $1$
Conductor $2011$
Sign $1$
Analytic cond. $216.111$
Root an. cond. $216.111$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 7-s − 8-s + 9-s − 10-s − 11-s − 12-s + 13-s + 14-s − 15-s + 16-s − 17-s − 18-s − 19-s + 20-s + 21-s + 22-s + 23-s + 24-s + 25-s − 26-s − 27-s − 28-s + ⋯
L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 7-s − 8-s + 9-s − 10-s − 11-s − 12-s + 13-s + 14-s − 15-s + 16-s − 17-s − 18-s − 19-s + 20-s + 21-s + 22-s + 23-s + 24-s + 25-s − 26-s − 27-s − 28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2011 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2011 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(2011\)
Sign: $1$
Analytic conductor: \(216.111\)
Root analytic conductor: \(216.111\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{2011} (2010, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 2011,\ (1:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.5869725302\)
\(L(\frac12)\) \(\approx\) \(0.5869725302\)
\(L(1)\) \(\approx\) \(0.4903903070\)
\(L(1)\) \(\approx\) \(0.4903903070\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2011 \( 1 \)
good2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 + T \)
17 \( 1 - T \)
19 \( 1 - T \)
23 \( 1 + T \)
29 \( 1 - T \)
31 \( 1 + T \)
37 \( 1 - T \)
41 \( 1 + T \)
43 \( 1 + T \)
47 \( 1 - T \)
53 \( 1 - T \)
59 \( 1 - T \)
61 \( 1 - T \)
67 \( 1 - T \)
71 \( 1 + T \)
73 \( 1 - T \)
79 \( 1 - T \)
83 \( 1 + T \)
89 \( 1 + T \)
97 \( 1 - T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.44167710532034174673713206960, −18.795199440490354601649902051234, −18.27412759337075320503104985715, −17.490840184183667435076921565564, −17.08966376820287751735699079595, −16.21920759150620512463129143550, −15.75251643168943629092111822102, −15.048096339780971782741167593233, −13.57760509429361157884363322358, −12.96453042401194124707524587451, −12.48131358584505874744725395229, −11.1967591835191728076773441134, −10.7334603597687525289307295638, −10.23049679982057810045994063912, −9.32601922242884721055551251865, −8.8188924322186848043221328198, −7.62830611616709875272880339443, −6.696374284341075413466670792813, −6.246244612512553351879993066, −5.66240680578143094399159035058, −4.58489182327237320470412077272, −3.2400073706179842695957863972, −2.32559914715180992040795361510, −1.42972080304135414620158102274, −0.390932760648706106866736217, 0.390932760648706106866736217, 1.42972080304135414620158102274, 2.32559914715180992040795361510, 3.2400073706179842695957863972, 4.58489182327237320470412077272, 5.66240680578143094399159035058, 6.246244612512553351879993066, 6.696374284341075413466670792813, 7.62830611616709875272880339443, 8.8188924322186848043221328198, 9.32601922242884721055551251865, 10.23049679982057810045994063912, 10.7334603597687525289307295638, 11.1967591835191728076773441134, 12.48131358584505874744725395229, 12.96453042401194124707524587451, 13.57760509429361157884363322358, 15.048096339780971782741167593233, 15.75251643168943629092111822102, 16.21920759150620512463129143550, 17.08966376820287751735699079595, 17.490840184183667435076921565564, 18.27412759337075320503104985715, 18.795199440490354601649902051234, 19.44167710532034174673713206960

Graph of the $Z$-function along the critical line