Properties

Label 1-199-199.53-r0-0-0
Degree $1$
Conductor $199$
Sign $0.865 - 0.501i$
Analytic cond. $0.924152$
Root an. cond. $0.924152$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.857 − 0.513i)2-s + (0.296 − 0.954i)3-s + (0.472 + 0.881i)4-s + (0.723 + 0.690i)5-s + (−0.745 + 0.666i)6-s + (−0.386 + 0.922i)7-s + (0.0475 − 0.998i)8-s + (−0.823 − 0.567i)9-s + (−0.266 − 0.963i)10-s + (0.415 − 0.909i)11-s + (0.981 − 0.189i)12-s + (−0.0158 + 0.999i)13-s + (0.805 − 0.592i)14-s + (0.873 − 0.486i)15-s + (−0.553 + 0.832i)16-s + (0.580 + 0.814i)17-s + ⋯
L(s)  = 1  + (−0.857 − 0.513i)2-s + (0.296 − 0.954i)3-s + (0.472 + 0.881i)4-s + (0.723 + 0.690i)5-s + (−0.745 + 0.666i)6-s + (−0.386 + 0.922i)7-s + (0.0475 − 0.998i)8-s + (−0.823 − 0.567i)9-s + (−0.266 − 0.963i)10-s + (0.415 − 0.909i)11-s + (0.981 − 0.189i)12-s + (−0.0158 + 0.999i)13-s + (0.805 − 0.592i)14-s + (0.873 − 0.486i)15-s + (−0.553 + 0.832i)16-s + (0.580 + 0.814i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 199 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.865 - 0.501i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 199 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.865 - 0.501i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(199\)
Sign: $0.865 - 0.501i$
Analytic conductor: \(0.924152\)
Root analytic conductor: \(0.924152\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{199} (53, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 199,\ (0:\ ),\ 0.865 - 0.501i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9229086737 - 0.2482651541i\)
\(L(\frac12)\) \(\approx\) \(0.9229086737 - 0.2482651541i\)
\(L(1)\) \(\approx\) \(0.8583474250 - 0.2253384379i\)
\(L(1)\) \(\approx\) \(0.8583474250 - 0.2253384379i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad199 \( 1 \)
good2 \( 1 + (-0.857 - 0.513i)T \)
3 \( 1 + (0.296 - 0.954i)T \)
5 \( 1 + (0.723 + 0.690i)T \)
7 \( 1 + (-0.386 + 0.922i)T \)
11 \( 1 + (0.415 - 0.909i)T \)
13 \( 1 + (-0.0158 + 0.999i)T \)
17 \( 1 + (0.580 + 0.814i)T \)
19 \( 1 + (0.766 - 0.642i)T \)
23 \( 1 + (0.527 + 0.849i)T \)
29 \( 1 + (0.630 - 0.776i)T \)
31 \( 1 + (0.678 - 0.734i)T \)
37 \( 1 + (0.173 - 0.984i)T \)
41 \( 1 + (-0.0792 + 0.996i)T \)
43 \( 1 + (0.173 + 0.984i)T \)
47 \( 1 + (-0.605 - 0.795i)T \)
53 \( 1 + (0.873 + 0.486i)T \)
59 \( 1 + (-0.786 - 0.618i)T \)
61 \( 1 + (-0.959 - 0.281i)T \)
67 \( 1 + (0.235 - 0.971i)T \)
71 \( 1 + (0.805 + 0.592i)T \)
73 \( 1 + (-0.999 + 0.0317i)T \)
79 \( 1 + (-0.444 - 0.895i)T \)
83 \( 1 + (0.981 + 0.189i)T \)
89 \( 1 + (-0.987 - 0.158i)T \)
97 \( 1 + (-0.975 - 0.220i)T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−27.18213328300003888380900363862, −25.94871183908936916870083852803, −25.36127793578411097974751868299, −24.63737392839939980250707232482, −23.14468581321617548616566634422, −22.45124638146591770904009932839, −20.72527320591177368438202639571, −20.457055907124741189760782443513, −19.59950369525391545768852938665, −18.06877551275656428662445641323, −17.153936214936364993856384222796, −16.51632652546219486213068304343, −15.6794583983234940622715179282, −14.492775806713979408777949956673, −13.73649276919268358994642221763, −12.18744389419271503930266560216, −10.4871807094828806404780411742, −10.03463450247203263016904798020, −9.20547433060409708905138840546, −8.12909786872897206281557162597, −6.92515992740906156606237697912, −5.518245251790145736086795444804, −4.63459676366383185603309243892, −2.9116174353735668224720000253, −1.14133078729219785951815772973, 1.391057842746801144647805369387, 2.51609398314242028263670667624, 3.35704363735737657712786643943, 5.965061242267952911073338106432, 6.64721513308420354312781133121, 7.87360365522974826089785900573, 9.017876119893080438915236299055, 9.6578795872987224548268579123, 11.233881929940342517627633029323, 11.86709455600971703680196358185, 13.08579032517797163799132260615, 13.93804969395438533643502076122, 15.19170331814819204757472630904, 16.6122398084324009849847673992, 17.557578898630212592623962481620, 18.45027014767272015254068542348, 19.08815069266708901396414163136, 19.66401542838060605609617921367, 21.35134432171481309812065552057, 21.6489192162606231818418100959, 22.981173309254919738226974586261, 24.52979792386925827082661064118, 25.01145934462739663094054463859, 26.12146955156355301939169315867, 26.44939766732331413442936854277

Graph of the $Z$-function along the critical line