Properties

Degree 1
Conductor 193
Sign $-0.707 + 0.707i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.555 − 0.831i)2-s + (−0.923 − 0.382i)3-s + (−0.382 + 0.923i)4-s + (−0.881 − 0.471i)5-s + (0.195 + 0.980i)6-s + (0.707 + 0.707i)7-s + (0.980 − 0.195i)8-s + (0.707 + 0.707i)9-s + (0.0980 + 0.995i)10-s + (0.290 − 0.956i)11-s + (0.707 − 0.707i)12-s + (−0.995 − 0.0980i)13-s + (0.195 − 0.980i)14-s + (0.634 + 0.773i)15-s + (−0.707 − 0.707i)16-s + (0.881 − 0.471i)17-s + ⋯
L(s,χ)  = 1  + (−0.555 − 0.831i)2-s + (−0.923 − 0.382i)3-s + (−0.382 + 0.923i)4-s + (−0.881 − 0.471i)5-s + (0.195 + 0.980i)6-s + (0.707 + 0.707i)7-s + (0.980 − 0.195i)8-s + (0.707 + 0.707i)9-s + (0.0980 + 0.995i)10-s + (0.290 − 0.956i)11-s + (0.707 − 0.707i)12-s + (−0.995 − 0.0980i)13-s + (0.195 − 0.980i)14-s + (0.634 + 0.773i)15-s + (−0.707 − 0.707i)16-s + (0.881 − 0.471i)17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 193 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (-0.707 + 0.707i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 193 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (-0.707 + 0.707i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(193\)
\( \varepsilon \)  =  $-0.707 + 0.707i$
motivic weight  =  \(0\)
character  :  $\chi_{193} (106, \cdot )$
Sato-Tate  :  $\mu(64)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 193,\ (1:\ ),\ -0.707 + 0.707i)$
$L(\chi,\frac{1}{2})$  $\approx$  $-0.1073654750 - 0.2591926153i$
$L(\frac12,\chi)$  $\approx$  $-0.1073654750 - 0.2591926153i$
$L(\chi,1)$  $\approx$  0.4076771883 - 0.2764785286i
$L(1,\chi)$  $\approx$  0.4076771883 - 0.2764785286i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−27.39207222952147417521992550583, −26.730556944565085219001152218779, −25.68204777378357592185510915634, −24.318681137036801049335911671540, −23.59215212115135092122542085250, −22.9642085808078756100270577624, −22.09213536090265971844470085848, −20.5768193966254590796083582159, −19.54804189038105428857900927230, −18.46697644788266809054396661063, −17.50612128692669153260431929478, −16.89149058084043579309413612763, −15.86668980302603631360336722866, −14.913194338105251399225653734793, −14.26958272192957233968099058807, −12.36114331500581165327914110728, −11.41422647271273721984570325396, −10.32623485010512812050452978172, −9.65875425698019334306325647424, −7.76576944692975988047233931595, −7.39074217510191526703132598605, −6.100733094782372537943434727306, −4.81315997773960579946313047716, −4.008248808959110926784964412854, −1.362214795784259564262247252373, 0.163144137293995184135182314772, 1.24736629718688582187188360228, 2.8411116595100330798501929234, 4.468470017669235737814769207167, 5.376588489228160001769017333498, 7.19539481089431218497195471429, 8.09823469982005324197127057009, 9.11394933221597419106731806338, 10.55553017644300366700967149175, 11.57559684171606758908808100520, 11.99338425637987104764458479672, 12.863795117674884111520061859585, 14.33664613087825409982280110600, 16.00042383927411050654511606314, 16.64529337876278171866815702975, 17.72408802031743930700309516854, 18.5583734233346397959574977650, 19.35641788337019272378188946137, 20.308989667312290431993485976810, 21.63507471832564760444982001130, 22.09129295020546656015385531841, 23.35727308850559271544719348758, 24.29675780703331471424765402526, 25.06691438897206168635900383139, 26.87824845426814622708932359276

Graph of the $Z$-function along the critical line