Properties

Degree 1
Conductor $ 11 \cdot 17 $
Sign $0.480 - 0.877i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.987 − 0.156i)2-s + (0.760 − 0.649i)3-s + (0.951 + 0.309i)4-s + (0.972 + 0.233i)5-s + (−0.852 + 0.522i)6-s + (0.649 − 0.760i)7-s + (−0.891 − 0.453i)8-s + (0.156 − 0.987i)9-s + (−0.923 − 0.382i)10-s + (0.923 − 0.382i)12-s + (−0.587 − 0.809i)13-s + (−0.760 + 0.649i)14-s + (0.891 − 0.453i)15-s + (0.809 + 0.587i)16-s + (−0.309 + 0.951i)18-s + (−0.453 + 0.891i)19-s + ⋯
L(s,χ)  = 1  + (−0.987 − 0.156i)2-s + (0.760 − 0.649i)3-s + (0.951 + 0.309i)4-s + (0.972 + 0.233i)5-s + (−0.852 + 0.522i)6-s + (0.649 − 0.760i)7-s + (−0.891 − 0.453i)8-s + (0.156 − 0.987i)9-s + (−0.923 − 0.382i)10-s + (0.923 − 0.382i)12-s + (−0.587 − 0.809i)13-s + (−0.760 + 0.649i)14-s + (0.891 − 0.453i)15-s + (0.809 + 0.587i)16-s + (−0.309 + 0.951i)18-s + (−0.453 + 0.891i)19-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 187 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.480 - 0.877i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 187 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.480 - 0.877i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(187\)    =    \(11 \cdot 17\)
\( \varepsilon \)  =  $0.480 - 0.877i$
motivic weight  =  \(0\)
character  :  $\chi_{187} (160, \cdot )$
Sato-Tate  :  $\mu(80)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 187,\ (0:\ ),\ 0.480 - 0.877i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.9953968545 - 0.5900013940i$
$L(\frac12,\chi)$  $\approx$  $0.9953968545 - 0.5900013940i$
$L(\chi,1)$  $\approx$  0.9882436244 - 0.3476944025i
$L(1,\chi)$  $\approx$  0.9882436244 - 0.3476944025i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−27.27466737602859374343502833071, −26.26607823690223430878982125327, −25.672812174616061245627243817043, −24.67129384043054577627649875191, −24.20042911234916507570153578441, −22.09149537398056666348866205680, −21.29581381680828794994878492019, −20.69374127168758844677269480560, −19.56501585039437553303651329053, −18.65575916291415966670628961367, −17.60778988679001774805514761014, −16.745409916028749135010757683, −15.69290830813815222334220644500, −14.72969200574377138523398051458, −13.95649715667397547569755227799, −12.361489522537961325713777983289, −11.02175352877199591005294561882, −10.04403854124167843906378366753, −9.05057128763020573403956057218, −8.61544926331205973879057448153, −7.215708540728890543341879690559, −5.80593338548285968582583301006, −4.63932750057175231248513312271, −2.56158238633971116673928246649, −1.91385071510417470817583470259, 1.31265946163940032315746082763, 2.23776831473312711419226860515, 3.53415586590409855132566242530, 5.70577470631053803066426902520, 7.023246435543675472900477292062, 7.75073796189558307119046148205, 8.82676834439778258585634043616, 9.91978062013667234002729231809, 10.6976282409376776422755058651, 12.140970071308379976217577204000, 13.2031324225145025279493332873, 14.29662284362080590138826185508, 15.11562560062578531678031091763, 16.7340500583325557636030471051, 17.61937789797084718683992567190, 18.17678691557290971662427608002, 19.25263769410898108246661049372, 20.25615403828888114814737941132, 20.81730603260180242818084220347, 21.90297702989165363851919533447, 23.571388021838120709084113474522, 24.54188227594611960357538934499, 25.300049646645980800834888178651, 25.98287192997203523224367481321, 26.91915508156600886638574122904

Graph of the $Z$-function along the critical line