Properties

Degree 1
Conductor 179
Sign $-0.356 + 0.934i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.844 + 0.535i)2-s + (−0.261 − 0.965i)3-s + (0.427 + 0.904i)4-s + (−0.825 + 0.564i)5-s + (0.295 − 0.955i)6-s + (−0.688 + 0.725i)7-s + (−0.123 + 0.992i)8-s + (−0.863 + 0.505i)9-s + (−0.999 + 0.0352i)10-s + (−0.579 + 0.815i)11-s + (0.760 − 0.648i)12-s + (0.0176 + 0.999i)13-s + (−0.969 + 0.244i)14-s + (0.760 + 0.648i)15-s + (−0.635 + 0.772i)16-s + (0.880 − 0.474i)17-s + ⋯
L(s,χ)  = 1  + (0.844 + 0.535i)2-s + (−0.261 − 0.965i)3-s + (0.427 + 0.904i)4-s + (−0.825 + 0.564i)5-s + (0.295 − 0.955i)6-s + (−0.688 + 0.725i)7-s + (−0.123 + 0.992i)8-s + (−0.863 + 0.505i)9-s + (−0.999 + 0.0352i)10-s + (−0.579 + 0.815i)11-s + (0.760 − 0.648i)12-s + (0.0176 + 0.999i)13-s + (−0.969 + 0.244i)14-s + (0.760 + 0.648i)15-s + (−0.635 + 0.772i)16-s + (0.880 − 0.474i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 179 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (-0.356 + 0.934i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 179 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (-0.356 + 0.934i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(179\)
\( \varepsilon \)  =  $-0.356 + 0.934i$
motivic weight  =  \(0\)
character  :  $\chi_{179} (22, \cdot )$
Sato-Tate  :  $\mu(89)$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((1,\ 179,\ (0:\ ),\ -0.356 + 0.934i)\)
\(L(\chi,\frac{1}{2})\)  \(\approx\)  \(0.6301571598 + 0.9144647577i\)
\(L(\frac12,\chi)\)  \(\approx\)  \(0.6301571598 + 0.9144647577i\)
\(L(\chi,1)\)  \(\approx\)  \(1.021664299 + 0.4956146408i\)
\(L(1,\chi)\)  \(\approx\)  \(1.021664299 + 0.4956146408i\)

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−27.290414482294749848602326714220, −26.336050199435979778692601895485, −24.95003499169824556924941731365, −23.72167086545080178566989866917, −23.06961310498964503764150944278, −22.38827045747025921882063498907, −21.17779620887638941695735342934, −20.44865638998100588679731345542, −19.75921325677041271242469606938, −18.636700787569710450620941495313, −16.72880668685882648050959508742, −16.18365517545702950729733894925, −15.27716388849484737712531086977, −14.23596809518933378171623680512, −12.94303811598797241979198343383, −12.18324576342136206295348573133, −10.83154994116126575269811432798, −10.40347845813840466732045202947, −9.04987095224155199403050168102, −7.55787611525281197416756883449, −5.85217663446623126054670313020, −5.06333533320852034038827462038, −3.67308657553394785707839874862, −3.30243635026352891253549503587, −0.69347620064815732064262727668, 2.3226601132837582966805883557, 3.33332227917359695142826941515, 4.941990337329764676345027753585, 6.090403889321776024642508229948, 7.18176169492355086851824278458, 7.64771314699293426128422815529, 9.20304516154919106858231153926, 11.19982635891943490399299627801, 11.93845885326930777300877387268, 12.72392169795805902340325017740, 13.741833416365919632153138555017, 14.85384324862704145294622858110, 15.735394159541298669673686131668, 16.68533364260704800992305152790, 17.98758011912849032434138512561, 18.8537975463515193894473745846, 19.77594241993248812125883617677, 21.109487372397832111506454253678, 22.42479193302977345332947058411, 22.87648262929664414397699273192, 23.75955508686439599717915849311, 24.52331816599414827089614721502, 25.79071238286097608440622058537, 26.049025481263645766463926553785, 27.73158965941525116005213572602

Graph of the $Z$-function along the critical line