Properties

Degree $1$
Conductor $177$
Sign $0.603 - 0.797i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.994 − 0.108i)2-s + (0.976 + 0.214i)4-s + (−0.796 − 0.605i)5-s + (−0.370 + 0.928i)7-s + (−0.947 − 0.319i)8-s + (0.725 + 0.687i)10-s + (0.907 − 0.419i)11-s + (0.161 − 0.986i)13-s + (0.468 − 0.883i)14-s + (0.907 + 0.419i)16-s + (0.370 + 0.928i)17-s + (−0.561 − 0.827i)19-s + (−0.647 − 0.762i)20-s + (−0.947 + 0.319i)22-s + (0.0541 − 0.998i)23-s + ⋯
L(s,χ)  = 1  + (−0.994 − 0.108i)2-s + (0.976 + 0.214i)4-s + (−0.796 − 0.605i)5-s + (−0.370 + 0.928i)7-s + (−0.947 − 0.319i)8-s + (0.725 + 0.687i)10-s + (0.907 − 0.419i)11-s + (0.161 − 0.986i)13-s + (0.468 − 0.883i)14-s + (0.907 + 0.419i)16-s + (0.370 + 0.928i)17-s + (−0.561 − 0.827i)19-s + (−0.647 − 0.762i)20-s + (−0.947 + 0.319i)22-s + (0.0541 − 0.998i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.603 - 0.797i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 177 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.603 - 0.797i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(177\)    =    \(3 \cdot 59\)
Sign: $0.603 - 0.797i$
Motivic weight: \(0\)
Character: $\chi_{177} (2, \cdot )$
Sato-Tate group: $\mu(58)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 177,\ (0:\ ),\ 0.603 - 0.797i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(0.5456801104 - 0.2712825898i\)
\(L(\frac12,\chi)\) \(\approx\) \(0.5456801104 - 0.2712825898i\)
\(L(\chi,1)\) \(\approx\) \(0.6213012971 - 0.1213135860i\)
\(L(1,\chi)\) \(\approx\) \(0.6213012971 - 0.1213135860i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−27.1590183400591730415011118525, −26.89311650843959688737646046834, −25.75586959613452250635996527305, −24.991212871969864696437178233970, −23.53039170747467765403258293370, −23.13614047282391391995724911341, −21.63601893296365128296723064330, −20.37060451546608313176663006037, −19.579257582948633604769103688693, −18.92651719458037204602500087759, −17.816812727138361650087424462925, −16.71063019058988314079398304896, −16.066815258803799432247799015490, −14.84520043385232615580548187479, −13.95807699653111193529574231662, −12.11353277815099975127078708342, −11.40220829939125523655403477652, −10.28631296059621620295849895553, −9.40115578883199222961705866446, −8.058866879618675519122636080142, −7.06581996089188004682083910453, −6.43417311987808309452805913279, −4.28286427635382101848905941687, −3.07388746512661983888255651664, −1.293947208334776061666588082247, 0.791759571027540452366273583960, 2.55623804782521430460308786376, 3.88021507691024724208910598976, 5.68945032060159101984572839902, 6.80415473301305841163493290157, 8.373575419542456641255432371864, 8.62916339926986833298394835513, 9.963457957321012252247518844043, 11.19642310610768826578531104272, 12.125879208913156686143611496706, 12.88677828809251032625324869866, 14.920420760284716738683912623037, 15.58379198770776792011810380108, 16.58383077919707159425334049984, 17.4285614286724734589794289664, 18.70065098029196472609164055858, 19.41794690884597417680958085594, 20.145256371931281985804858802571, 21.293603517625893370715385808179, 22.305979523946692960848975433153, 23.67796644555192686385959293393, 24.698125503774409180516039808776, 25.284267626030472900135623506255, 26.44707544883666404419841261053, 27.48349375703368052465293276485

Graph of the $Z$-function along the critical line