Properties

Degree $1$
Conductor $175$
Sign $0.784 + 0.620i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.406 + 0.913i)2-s + (−0.743 + 0.669i)3-s + (−0.669 − 0.743i)4-s + (−0.309 − 0.951i)6-s + (0.951 − 0.309i)8-s + (0.104 − 0.994i)9-s + (−0.104 − 0.994i)11-s + (0.994 + 0.104i)12-s + (0.587 − 0.809i)13-s + (−0.104 + 0.994i)16-s + (−0.207 + 0.978i)17-s + (0.866 + 0.5i)18-s + (0.669 − 0.743i)19-s + (0.951 + 0.309i)22-s + (0.406 − 0.913i)23-s + (−0.5 + 0.866i)24-s + ⋯
L(s,χ)  = 1  + (−0.406 + 0.913i)2-s + (−0.743 + 0.669i)3-s + (−0.669 − 0.743i)4-s + (−0.309 − 0.951i)6-s + (0.951 − 0.309i)8-s + (0.104 − 0.994i)9-s + (−0.104 − 0.994i)11-s + (0.994 + 0.104i)12-s + (0.587 − 0.809i)13-s + (−0.104 + 0.994i)16-s + (−0.207 + 0.978i)17-s + (0.866 + 0.5i)18-s + (0.669 − 0.743i)19-s + (0.951 + 0.309i)22-s + (0.406 − 0.913i)23-s + (−0.5 + 0.866i)24-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.784 + 0.620i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 175 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.784 + 0.620i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $0.784 + 0.620i$
Motivic weight: \(0\)
Character: $\chi_{175} (117, \cdot )$
Sato-Tate group: $\mu(60)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 175,\ (0:\ ),\ 0.784 + 0.620i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(0.6236890824 + 0.2168116137i\)
\(L(\frac12,\chi)\) \(\approx\) \(0.6236890824 + 0.2168116137i\)
\(L(\chi,1)\) \(\approx\) \(0.6292957526 + 0.2593990132i\)
\(L(1,\chi)\) \(\approx\) \(0.6292957526 + 0.2593990132i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−27.71427969255647128392824663552, −26.570950001612869504397145239105, −25.499510349868335891947563713266, −24.46987158154937749010344138546, −22.95674989036598875415694054941, −22.82823875650021612169260557998, −21.41685206570409877178163518679, −20.54625359300553801847973866847, −19.39312705421882838892267598712, −18.55100814942770886758213755859, −17.7963841682054045789594888377, −16.92654789732704120650181464470, −15.83196177485877228782654618080, −13.95934848684461389395626184005, −13.19434519995351833311668770459, −11.99317162462815291355131594774, −11.53222300324303305629449288324, −10.28798712329165285699741611139, −9.279292591689503529503115574, −7.84668584098711428839001198770, −6.93739934397269693983693376818, −5.33862295276711058537982370815, −4.125345513156283612421600643821, −2.40430605225596256632046130800, −1.23989856418604516245677320542, 0.83438079337319009422162164885, 3.49886693294422654481565682009, 4.88752535987385010258438163188, 5.81775210299252719022945815232, 6.71807619409649569383452282316, 8.24872882287284442947838489836, 9.13108733194786209975091691854, 10.44988379031005203527720609161, 11.02612275786525386550979603175, 12.67504619957662946203956080399, 13.88144943899246853131239168629, 15.11001686493614532424994592620, 15.842545770475150960505874735314, 16.677748243279785442899826598908, 17.59367905145371785712253859367, 18.40565292030331594161614685433, 19.59790447854706257190564653924, 20.91929418319557746529640309240, 22.07745313829796083632948479278, 22.78131173900782447420819506897, 23.83479011773450974687261625342, 24.51472440837119289053169094468, 25.87716091669002707759178308436, 26.59226119205659184155517100115, 27.428083366182271789426784288707

Graph of the $Z$-function along the critical line