Properties

Degree 1
Conductor 173
Sign $0.908 - 0.418i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.833 + 0.551i)2-s + (0.997 − 0.0729i)3-s + (0.391 − 0.920i)4-s + (0.694 − 0.719i)5-s + (−0.791 + 0.611i)6-s + (−0.520 − 0.853i)7-s + (0.181 + 0.983i)8-s + (0.989 − 0.145i)9-s + (−0.181 + 0.983i)10-s + (−0.639 + 0.768i)11-s + (0.322 − 0.946i)12-s + (0.833 − 0.551i)13-s + (0.905 + 0.424i)14-s + (0.639 − 0.768i)15-s + (−0.694 − 0.719i)16-s + (−0.252 − 0.967i)17-s + ⋯
L(s,χ)  = 1  + (−0.833 + 0.551i)2-s + (0.997 − 0.0729i)3-s + (0.391 − 0.920i)4-s + (0.694 − 0.719i)5-s + (−0.791 + 0.611i)6-s + (−0.520 − 0.853i)7-s + (0.181 + 0.983i)8-s + (0.989 − 0.145i)9-s + (−0.181 + 0.983i)10-s + (−0.639 + 0.768i)11-s + (0.322 − 0.946i)12-s + (0.833 − 0.551i)13-s + (0.905 + 0.424i)14-s + (0.639 − 0.768i)15-s + (−0.694 − 0.719i)16-s + (−0.252 − 0.967i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 173 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.908 - 0.418i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 173 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.908 - 0.418i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(173\)
\( \varepsilon \)  =  $0.908 - 0.418i$
motivic weight  =  \(0\)
character  :  $\chi_{173} (67, \cdot )$
Sato-Tate  :  $\mu(86)$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((1,\ 173,\ (0:\ ),\ 0.908 - 0.418i)\)
\(L(\chi,\frac{1}{2})\)  \(\approx\)  \(1.100592418 - 0.2412415830i\)
\(L(\frac12,\chi)\)  \(\approx\)  \(1.100592418 - 0.2412415830i\)
\(L(\chi,1)\)  \(\approx\)  \(1.042965931 - 0.06021093227i\)
\(L(1,\chi)\)  \(\approx\)  \(1.042965931 - 0.06021093227i\)

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−27.454232896784647679460690847451, −26.3066778232871765423268828800, −25.89968726850916877051447910663, −25.23642662942647863323140397829, −24.00936170656211257569531137134, −22.15201873866854240898817372771, −21.50970971456718199978207478363, −20.849061782127289729714160538244, −19.52638017519791474564085345775, −18.69133193929622297557087853312, −18.37560726821162465673065348824, −16.834423773691126449866991290233, −15.7307960414426006795790150859, −14.77721191872231028538891087528, −13.37279224642369706525346992048, −12.76426290582795400974663891917, −11.02946510783198241740182782475, −10.34185847562096846223688222731, −8.99638190176751128693566775708, −8.67989157952106153431099188424, −7.153643929424377766791151617365, −6.04708696232385548085220145185, −3.77640091538982732095369014998, −2.742229474203370647461872489265, −1.91845831007755517824545395410, 1.19051328333794815235867005556, 2.513574395842878851332822546826, 4.32600260414725865963468510543, 5.79236721450870564207464870541, 7.13552934674480879677356221262, 7.969735991795560780287357257236, 9.16946068363629616410703648422, 9.776475242585993818923531855679, 10.80478571760828672254134382089, 12.91583150727204452759196233431, 13.47796088161684031595391145758, 14.670038525918035369042587731765, 15.73331751616230513015390483525, 16.56543681776390217889699226026, 17.69012160575191022830191857343, 18.525206613159744308354582872268, 19.74616301690184770936748641466, 20.43005476567291984641279393697, 21.06681161477183475906799715321, 22.99161349446886613660357039030, 23.82506915303145680615732416855, 25.04211869384046762829289294563, 25.48103451271059923599154705654, 26.22387348234798368825067809859, 27.24738011807263973759204105650

Graph of the $Z$-function along the critical line