Properties

Degree 1
Conductor 173
Sign $0.757 - 0.652i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.181 − 0.983i)2-s + (0.976 + 0.217i)3-s + (−0.934 − 0.357i)4-s + (−0.744 + 0.667i)5-s + (0.391 − 0.920i)6-s + (0.997 + 0.0729i)7-s + (−0.520 + 0.853i)8-s + (0.905 + 0.424i)9-s + (0.520 + 0.853i)10-s + (0.872 − 0.489i)11-s + (−0.833 − 0.551i)12-s + (−0.181 + 0.983i)13-s + (0.252 − 0.967i)14-s + (−0.872 + 0.489i)15-s + (0.744 + 0.667i)16-s + (0.694 − 0.719i)17-s + ⋯
L(s,χ)  = 1  + (0.181 − 0.983i)2-s + (0.976 + 0.217i)3-s + (−0.934 − 0.357i)4-s + (−0.744 + 0.667i)5-s + (0.391 − 0.920i)6-s + (0.997 + 0.0729i)7-s + (−0.520 + 0.853i)8-s + (0.905 + 0.424i)9-s + (0.520 + 0.853i)10-s + (0.872 − 0.489i)11-s + (−0.833 − 0.551i)12-s + (−0.181 + 0.983i)13-s + (0.252 − 0.967i)14-s + (−0.872 + 0.489i)15-s + (0.744 + 0.667i)16-s + (0.694 − 0.719i)17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 173 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.757 - 0.652i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 173 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.757 - 0.652i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(173\)
\( \varepsilon \)  =  $0.757 - 0.652i$
motivic weight  =  \(0\)
character  :  $\chi_{173} (35, \cdot )$
Sato-Tate  :  $\mu(86)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 173,\ (0:\ ),\ 0.757 - 0.652i)$
$L(\chi,\frac{1}{2})$  $\approx$  $1.447906219 - 0.5376628346i$
$L(\frac12,\chi)$  $\approx$  $1.447906219 - 0.5376628346i$
$L(\chi,1)$  $\approx$  1.330475090 - 0.4249463392i
$L(1,\chi)$  $\approx$  1.330475090 - 0.4249463392i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−27.44358754643825365418891253298, −26.628969513918348236999070168128, −25.25322224890315270705071299560, −24.9228064681963084934237722983, −23.8984614846269422792962265122, −23.24071806370973698274319219998, −21.825172410567031517303495335296, −20.7164632646988261467058532393, −19.88013741152663924156101439951, −18.776721743234870886881067337180, −17.64840635859540036361503600666, −16.73534361899978584183702829809, −15.4396706178172217229583202005, −14.83151457514891169541738869570, −14.01096801650262312600019954796, −12.736958299591146382841871275115, −12.026577833912000269825777916857, −10.01823559334080129217059028610, −8.79173161126063024057877137607, −7.967070104293504542232839877334, −7.465308432783506263223707689917, −5.76959899297263994907533188155, −4.379870289947590343139728973214, −3.65118478073352385113364287688, −1.4678066292958898006600517486, 1.633104585744823604412468570427, 2.89306187617998308702552562153, 3.929938371860256418192872872776, 4.84225846869504615791867263205, 6.935693065095675336265806565086, 8.26323112151802680358950365997, 9.051456926281428091864506239410, 10.29970483617021536472338213592, 11.38498718248426574717374413140, 12.05419345236545453057403631729, 13.70027111522886796222191914246, 14.38181570488290170905480230327, 14.99069471414865314351259111881, 16.495381849271251362988992043430, 18.153137205403863855104268073996, 18.83548253660354502879490409752, 19.74878079221972514165106438956, 20.428109031033394148704819317077, 21.658236880319571448022152179837, 22.042491270228463885702686049235, 23.59775834418699404083946071042, 24.23646130321987669928856067733, 25.704663717492744470040672373597, 26.86718923144778272426949604284, 27.22194297274355934913542432381

Graph of the $Z$-function along the critical line