Properties

Label 1-1729-1729.1728-r0-0-0
Degree $1$
Conductor $1729$
Sign $1$
Analytic cond. $8.02944$
Root an. cond. $8.02944$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s + 8-s + 9-s + 10-s − 11-s + 12-s + 15-s + 16-s − 17-s + 18-s + 20-s − 22-s + 23-s + 24-s + 25-s + 27-s − 29-s + 30-s − 31-s + 32-s − 33-s − 34-s + 36-s + ⋯
L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s + 8-s + 9-s + 10-s − 11-s + 12-s + 15-s + 16-s − 17-s + 18-s + 20-s − 22-s + 23-s + 24-s + 25-s + 27-s − 29-s + 30-s − 31-s + 32-s − 33-s − 34-s + 36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(1729\)    =    \(7 \cdot 13 \cdot 19\)
Sign: $1$
Analytic conductor: \(8.02944\)
Root analytic conductor: \(8.02944\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{1729} (1728, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 1729,\ (0:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(5.485046587\)
\(L(\frac12)\) \(\approx\) \(5.485046587\)
\(L(1)\) \(\approx\) \(3.090063213\)
\(L(1)\) \(\approx\) \(3.090063213\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 \)
19 \( 1 \)
good2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 + T \)
11 \( 1 - T \)
17 \( 1 - T \)
23 \( 1 + T \)
29 \( 1 - T \)
31 \( 1 - T \)
37 \( 1 + T \)
41 \( 1 - T \)
43 \( 1 + T \)
47 \( 1 + T \)
53 \( 1 - T \)
59 \( 1 - T \)
61 \( 1 - T \)
67 \( 1 + T \)
71 \( 1 + T \)
73 \( 1 + T \)
79 \( 1 - T \)
83 \( 1 + T \)
89 \( 1 - T \)
97 \( 1 - T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−20.463612661263978907704056576377, −19.92708293996445195206570134727, −18.833661428598869609663873021438, −18.29170524774732556359977431034, −17.20010737892209897759824022113, −16.415728550716005292623082645683, −15.4453053283689567922948663663, −15.0782729153791899086439983451, −14.146092222662917403246840842713, −13.63483608688376387808514230613, −12.90738643101342180008355385368, −12.638193191374443672452967858271, −11.08789413217670756711781285377, −10.658257163138566991137072007052, −9.6401291918048351200189727766, −8.97617648095196207361234760045, −7.89916603737881826587931772833, −7.17065150935229486654552095309, −6.37144458188859794805335182221, −5.40686510869533426538657792639, −4.73492876088125932652211004441, −3.755563159107694811775706509915, −2.77891299642946434085222088506, −2.29229340648354120943418259824, −1.4206010613486802709621688509, 1.4206010613486802709621688509, 2.29229340648354120943418259824, 2.77891299642946434085222088506, 3.755563159107694811775706509915, 4.73492876088125932652211004441, 5.40686510869533426538657792639, 6.37144458188859794805335182221, 7.17065150935229486654552095309, 7.89916603737881826587931772833, 8.97617648095196207361234760045, 9.6401291918048351200189727766, 10.658257163138566991137072007052, 11.08789413217670756711781285377, 12.638193191374443672452967858271, 12.90738643101342180008355385368, 13.63483608688376387808514230613, 14.146092222662917403246840842713, 15.0782729153791899086439983451, 15.4453053283689567922948663663, 16.415728550716005292623082645683, 17.20010737892209897759824022113, 18.29170524774732556359977431034, 18.833661428598869609663873021438, 19.92708293996445195206570134727, 20.463612661263978907704056576377

Graph of the $Z$-function along the critical line