Properties

Label 1-40e2-1600.469-r0-0-0
Degree $1$
Conductor $1600$
Sign $0.999 + 0.00392i$
Analytic cond. $7.43036$
Root an. cond. $7.43036$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.0784 − 0.996i)3-s + (−0.707 − 0.707i)7-s + (−0.987 + 0.156i)9-s + (−0.972 + 0.233i)11-s + (−0.233 + 0.972i)13-s + (−0.951 + 0.309i)17-s + (0.760 − 0.649i)19-s + (−0.649 + 0.760i)21-s + (−0.156 + 0.987i)23-s + (0.233 + 0.972i)27-s + (−0.0784 − 0.996i)29-s + (−0.309 − 0.951i)31-s + (0.309 + 0.951i)33-s + (−0.852 + 0.522i)37-s + (0.987 + 0.156i)39-s + ⋯
L(s)  = 1  + (−0.0784 − 0.996i)3-s + (−0.707 − 0.707i)7-s + (−0.987 + 0.156i)9-s + (−0.972 + 0.233i)11-s + (−0.233 + 0.972i)13-s + (−0.951 + 0.309i)17-s + (0.760 − 0.649i)19-s + (−0.649 + 0.760i)21-s + (−0.156 + 0.987i)23-s + (0.233 + 0.972i)27-s + (−0.0784 − 0.996i)29-s + (−0.309 − 0.951i)31-s + (0.309 + 0.951i)33-s + (−0.852 + 0.522i)37-s + (0.987 + 0.156i)39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00392i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00392i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(1600\)    =    \(2^{6} \cdot 5^{2}\)
Sign: $0.999 + 0.00392i$
Analytic conductor: \(7.43036\)
Root analytic conductor: \(7.43036\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1600} (469, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 1600,\ (0:\ ),\ 0.999 + 0.00392i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8219270100 + 0.001613851984i\)
\(L(\frac12)\) \(\approx\) \(0.8219270100 + 0.001613851984i\)
\(L(1)\) \(\approx\) \(0.7607870081 - 0.2080901182i\)
\(L(1)\) \(\approx\) \(0.7607870081 - 0.2080901182i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + (-0.0784 - 0.996i)T \)
7 \( 1 + (-0.707 - 0.707i)T \)
11 \( 1 + (-0.972 + 0.233i)T \)
13 \( 1 + (-0.233 + 0.972i)T \)
17 \( 1 + (-0.951 + 0.309i)T \)
19 \( 1 + (0.760 - 0.649i)T \)
23 \( 1 + (-0.156 + 0.987i)T \)
29 \( 1 + (-0.0784 - 0.996i)T \)
31 \( 1 + (-0.309 - 0.951i)T \)
37 \( 1 + (-0.852 + 0.522i)T \)
41 \( 1 + (0.987 - 0.156i)T \)
43 \( 1 + (0.923 + 0.382i)T \)
47 \( 1 + (0.951 + 0.309i)T \)
53 \( 1 + (-0.649 + 0.760i)T \)
59 \( 1 + (-0.852 + 0.522i)T \)
61 \( 1 + (0.522 - 0.852i)T \)
67 \( 1 + (0.649 + 0.760i)T \)
71 \( 1 + (0.891 - 0.453i)T \)
73 \( 1 + (0.156 - 0.987i)T \)
79 \( 1 + (0.951 + 0.309i)T \)
83 \( 1 + (-0.760 + 0.649i)T \)
89 \( 1 + (0.987 + 0.156i)T \)
97 \( 1 + (0.309 - 0.951i)T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−20.40657668230192272403923882946, −20.0072021129667982644430578639, −18.97202305514609238157975412146, −18.15350807446603263271368040359, −17.5735325156017151453663293788, −16.42758860731696852291334153894, −15.903364460811601176721912524941, −15.523392454212264110236441298964, −14.58665826730857354967636124687, −13.847879146384402852556551504185, −12.7068627403706693240205489840, −12.33042541716293694167586854202, −11.111414274209803852833978313751, −10.54500146754555739005398038237, −9.85952137651120456573261779619, −8.99339109451632180607770021151, −8.42297882455428187248870117379, −7.36718751573336302162199514186, −6.25171146428191655337714538250, −5.43476221671939715696255592843, −4.97867445117799643228223684764, −3.74166157089545376880522290288, −2.99408528482272505794426716988, −2.31825952618584527872754945096, −0.410523548257906117026703722084, 0.77817520429226015825591634566, 2.00788163476017096986843689110, 2.70214383501144138909215020418, 3.81830819420653572999175163869, 4.79288391232518758211661211625, 5.85991883338791724645005000083, 6.56786062480300676701191169175, 7.41738592368796136163901419270, 7.77836209214639149899246462629, 9.062327346099261530443627411851, 9.63898121298099131919075819513, 10.783201731237990045613928470398, 11.37280605573354885633483166092, 12.28827359522443541301233461763, 13.053578409698113021101928715579, 13.61105569879804490079967984118, 14.11270583987836300954164878620, 15.40453657810916989597985646412, 15.9386728370927251313889608912, 17.034267617208789923043490565499, 17.42625930931676068414027163115, 18.3043118364247555030093676368, 19.04869073232984730997454322892, 19.60819048679168672019484501634, 20.28715902110048088006621187676

Graph of the $Z$-function along the critical line