Properties

Degree $1$
Conductor $149$
Sign $-0.910 + 0.414i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.0424 − 0.999i)2-s + (0.524 − 0.851i)3-s + (−0.996 − 0.0848i)4-s + (−0.292 − 0.956i)5-s + (−0.828 − 0.559i)6-s + (−0.967 + 0.251i)7-s + (−0.127 + 0.991i)8-s + (−0.450 − 0.892i)9-s + (−0.967 + 0.251i)10-s + (−0.996 + 0.0848i)11-s + (−0.594 + 0.803i)12-s + (0.778 + 0.628i)13-s + (0.210 + 0.977i)14-s + (−0.967 − 0.251i)15-s + (0.985 + 0.169i)16-s + (0.524 − 0.851i)17-s + ⋯
L(s,χ)  = 1  + (0.0424 − 0.999i)2-s + (0.524 − 0.851i)3-s + (−0.996 − 0.0848i)4-s + (−0.292 − 0.956i)5-s + (−0.828 − 0.559i)6-s + (−0.967 + 0.251i)7-s + (−0.127 + 0.991i)8-s + (−0.450 − 0.892i)9-s + (−0.967 + 0.251i)10-s + (−0.996 + 0.0848i)11-s + (−0.594 + 0.803i)12-s + (0.778 + 0.628i)13-s + (0.210 + 0.977i)14-s + (−0.967 − 0.251i)15-s + (0.985 + 0.169i)16-s + (0.524 − 0.851i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 149 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (-0.910 + 0.414i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 149 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (-0.910 + 0.414i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(149\)
Sign: $-0.910 + 0.414i$
Motivic weight: \(0\)
Character: $\chi_{149} (88, \cdot )$
Sato-Tate group: $\mu(37)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 149,\ (0:\ ),\ -0.910 + 0.414i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(-0.1705020047 - 0.7855772874i\)
\(L(\frac12,\chi)\) \(\approx\) \(-0.1705020047 - 0.7855772874i\)
\(L(\chi,1)\) \(\approx\) \(0.4533348865 - 0.7558047101i\)
\(L(1,\chi)\) \(\approx\) \(0.4533348865 - 0.7558047101i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−28.274072709743886389696529114876, −27.33435647899550050474938604869, −26.442084775731229371085256063829, −25.80448577222346039579801406996, −25.28660464953478068977027669325, −23.41243711246939243370680319965, −23.031362328829281996629675469606, −21.944172838252209356368962850030, −21.042233338080419562920665790964, −19.452226436848988021675549675047, −18.80802870658495378690068524396, −17.48511166921776214650805618248, −16.23200618958439201019413992114, −15.58252825263604000733096827708, −14.82002166972581948151428184804, −13.74529356345938872886765800925, −12.794554005067825263946973970253, −10.60870566100216626842487390329, −10.15953302481477706392269077107, −8.69696877473890099338028851109, −7.78097084304546595932141832812, −6.530660272695524112236827123203, −5.37369529381794774123016227767, −3.79124264284500218536520623817, −3.102367283078041769581446948005, 0.64678084373759374048320614053, 2.238053258387227400917303997309, 3.35395812125817497830455743015, 4.78593700945961947471781587848, 6.29331587191161791470534552428, 7.97542141737782851122752631964, 8.85994135398742499446718017874, 9.75349212008009121618191775467, 11.36395590509726489664207964282, 12.426699460748963348571877377150, 13.06273199619960644530317322233, 13.78056347540472563618449086264, 15.352983984407176588997726448391, 16.632623282055179603054261890271, 17.9551609075846619685897674067, 19.01409310490212934398409594868, 19.415793591393640097655626238956, 20.748947138102096609165593146307, 21.05909309913276565488161890626, 22.90077624438693145902703510655, 23.40282748360589285545989304687, 24.53765885863986260482259837719, 25.72458443784446485200007323086, 26.52388387069311062412064654668, 27.998490036988883150169645503030

Graph of the $Z$-function along the critical line