Properties

Degree $1$
Conductor $149$
Sign $0.988 + 0.153i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.911 + 0.411i)2-s + (−0.721 − 0.691i)3-s + (0.660 − 0.750i)4-s + (0.985 − 0.169i)5-s + (0.942 + 0.333i)6-s + (−0.828 + 0.559i)7-s + (−0.292 + 0.956i)8-s + (0.0424 + 0.999i)9-s + (−0.828 + 0.559i)10-s + (0.660 + 0.750i)11-s + (−0.996 + 0.0848i)12-s + (0.873 − 0.487i)13-s + (0.524 − 0.851i)14-s + (−0.828 − 0.559i)15-s + (−0.127 − 0.991i)16-s + (−0.721 − 0.691i)17-s + ⋯
L(s,χ)  = 1  + (−0.911 + 0.411i)2-s + (−0.721 − 0.691i)3-s + (0.660 − 0.750i)4-s + (0.985 − 0.169i)5-s + (0.942 + 0.333i)6-s + (−0.828 + 0.559i)7-s + (−0.292 + 0.956i)8-s + (0.0424 + 0.999i)9-s + (−0.828 + 0.559i)10-s + (0.660 + 0.750i)11-s + (−0.996 + 0.0848i)12-s + (0.873 − 0.487i)13-s + (0.524 − 0.851i)14-s + (−0.828 − 0.559i)15-s + (−0.127 − 0.991i)16-s + (−0.721 − 0.691i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 149 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.988 + 0.153i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 149 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.988 + 0.153i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(149\)
Sign: $0.988 + 0.153i$
Motivic weight: \(0\)
Character: $\chi_{149} (102, \cdot )$
Sato-Tate group: $\mu(37)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 149,\ (0:\ ),\ 0.988 + 0.153i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(0.6596236274 + 0.05104316526i\)
\(L(\frac12,\chi)\) \(\approx\) \(0.6596236274 + 0.05104316526i\)
\(L(\chi,1)\) \(\approx\) \(0.6723185347 + 0.02229127299i\)
\(L(1,\chi)\) \(\approx\) \(0.6723185347 + 0.02229127299i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−28.357880422495315317969078920350, −27.056394683954126296570790558601, −26.31384626603034810474372271424, −25.63256785400837136017406347447, −24.313937243711417872552544362546, −22.91772828077885020136414055848, −21.79952722938198142784110920696, −21.365962495629275022939449796108, −20.15714470499892778084963703707, −19.07113096513418582612204778465, −17.943120993000365529447235590129, −17.014697899095866698902558824999, −16.50893650608963945244510664408, −15.35567337384724377285629083755, −13.678283731409853623759971808103, −12.60590311779297834727063851425, −11.07353897757236200105681340850, −10.66403304573250146680463853616, −9.447303253330372780909189247631, −8.82398627868583495752882185397, −6.60181230876697835017339398270, −6.288477463430615489809315681663, −4.228879722731413054213784545, −2.958641451398025078772820128628, −1.06348052155484850259180911021, 1.23238248175638403000179503343, 2.467582354792341090700368053457, 5.16483703091647881995859415795, 6.27259306519465648202039915898, 6.74138719058820033257836076332, 8.33516528986400675667658764588, 9.46303305679018766101289973597, 10.36928342175676124965425073934, 11.647122752719819728295671637121, 12.77913824799280712495301176860, 13.84346302488856344828623475337, 15.34622949302398598040425314760, 16.39489225501462509809894920471, 17.31523735677622451869099936697, 18.01550080183469897976996153526, 18.85499500099351011217120187429, 19.88546539834073274809909185918, 21.15062991281334875470632000504, 22.56504456907918500090149254349, 23.21764873396147660260064370891, 24.8254830179951561866380411730, 25.04257018939208621552556936477, 25.86386196759616441339722770415, 27.39593614854679670765884592047, 28.26563457053812538156026748700

Graph of the $Z$-function along the critical line