Properties

Degree $1$
Conductor $13$
Sign $0.289 + 0.957i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + i·2-s + 3-s − 4-s + i·5-s + i·6-s i·7-s i·8-s + 9-s − 10-s i·11-s − 12-s + 14-s + i·15-s + 16-s − 17-s + i·18-s + ⋯
L(s,χ)  = 1  + i·2-s + 3-s − 4-s + i·5-s + i·6-s i·7-s i·8-s + 9-s − 10-s i·11-s − 12-s + 14-s + i·15-s + 16-s − 17-s + i·18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (0.289 + 0.957i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 13 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (0.289 + 0.957i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(13\)
Sign: $0.289 + 0.957i$
Motivic weight: \(0\)
Character: $\chi_{13} (8, \cdot )$
Sato-Tate group: $\mu(4)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 13,\ (1:\ ),\ 0.289 + 0.957i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(1.080873679 + 0.8020687656i\)
\(L(\frac12,\chi)\) \(\approx\) \(1.080873679 + 0.8020687656i\)
\(L(\chi,1)\) \(\approx\) \(1.086429434 + 0.5814393878i\)
\(L(1,\chi)\) \(\approx\) \(1.086429434 + 0.5814393878i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−43.76093287357656424939124511852, −41.709436176353847190567066381979, −40.54440810940620714296349107648, −38.88962429257123256447175596942, −37.76264121822764455968030883774, −36.53000016843034794854918904908, −35.50574902500719058128431674735, −32.6862225849004931411585046007, −31.5663026885561902954123742197, −30.62909489872992613680589947841, −28.713965931984609204490184782952, −27.61930936712106563830038196074, −25.8005879811408814363739761787, −24.21131436731631252498581961937, −21.93983499378017955326433862694, −20.59904703474526016023825974227, −19.59738667898703140158158422106, −17.91787476538898323746092421502, −15.34689368438853111429470458191, −13.39728080193893431404171908435, −12.14842691516461133225165992250, −9.59882957568404703438492303028, −8.48269853307877161078322980284, −4.56540124508568592878688473294, −2.19555319112541449367642087766, 3.7438215641461395319322782061, 6.7294196966943624248386542292, 8.206623201456027180127384654917, 10.21254084453347825369758588336, 13.587144687321544861182967302511, 14.468748219148105193603380433629, 16.0830899304950548429787234291, 18.10686380050982826089918877859, 19.55290227529063987885835251978, 21.7460382586681658260482353039, 23.4392965809666309731024672722, 24.95202266245560552819984002747, 26.45434783862766779809482397395, 26.91280133880953633992411090990, 29.87968724894081675819666253017, 31.2050934342588729157708559964, 32.61135344484786379077167851304, 33.80618812692548610046079809159, 35.42571280459602374366758944441, 36.74450646135960045266662861837, 37.94370316023537118571962014758, 39.99884476625807221373619354350, 42.01243734111834789179206571829, 42.33321828301002446414212889588, 43.66169372259601355647086681782

Graph of the $Z$-function along the critical line