Properties

Degree $1$
Conductor $121$
Sign $0.998 - 0.0519i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.0285 − 0.999i)2-s + (−0.809 − 0.587i)3-s + (−0.998 + 0.0570i)4-s + (0.516 + 0.856i)5-s + (−0.564 + 0.825i)6-s + (0.198 + 0.980i)7-s + (0.0855 + 0.996i)8-s + (0.309 + 0.951i)9-s + (0.841 − 0.540i)10-s + (0.841 + 0.540i)12-s + (−0.254 + 0.967i)13-s + (0.974 − 0.226i)14-s + (0.0855 − 0.996i)15-s + (0.993 − 0.113i)16-s + (−0.985 − 0.170i)17-s + (0.941 − 0.336i)18-s + ⋯
L(s,χ)  = 1  + (−0.0285 − 0.999i)2-s + (−0.809 − 0.587i)3-s + (−0.998 + 0.0570i)4-s + (0.516 + 0.856i)5-s + (−0.564 + 0.825i)6-s + (0.198 + 0.980i)7-s + (0.0855 + 0.996i)8-s + (0.309 + 0.951i)9-s + (0.841 − 0.540i)10-s + (0.841 + 0.540i)12-s + (−0.254 + 0.967i)13-s + (0.974 − 0.226i)14-s + (0.0855 − 0.996i)15-s + (0.993 − 0.113i)16-s + (−0.985 − 0.170i)17-s + (0.941 − 0.336i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 121 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.998 - 0.0519i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 121 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.998 - 0.0519i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(121\)    =    \(11^{2}\)
Sign: $0.998 - 0.0519i$
Motivic weight: \(0\)
Character: $\chi_{121} (70, \cdot )$
Sato-Tate group: $\mu(55)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 121,\ (0:\ ),\ 0.998 - 0.0519i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(0.7244336216 + 0.01881311468i\)
\(L(\frac12,\chi)\) \(\approx\) \(0.7244336216 + 0.01881311468i\)
\(L(\chi,1)\) \(\approx\) \(0.7601897087 - 0.1845849119i\)
\(L(1,\chi)\) \(\approx\) \(0.7601897087 - 0.1845849119i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−28.81506560447241553200464370715, −27.857732339105264669928267077286, −26.99410791982619310767342183301, −26.1947403859638745629167708841, −24.76556938135432917923539857560, −24.13908174653977593572064155316, −23.00017636161592221479858653800, −22.29891218116563333688037347022, −21.03440022309183821325814212580, −20.06037572957900612385058961746, −18.14994251063684628251192451263, −17.37519014647072300679712486887, −16.69131390526905835480443610470, −15.83940785965424958409579834086, −14.62858628132192328817031855709, −13.37981636106402527573963024064, −12.44002954505434159483309087059, −10.66368413321431838626703430957, −9.770707762797743883345308953973, −8.57950536626836473991862520365, −7.18061322319923581488425471205, −5.888886683589688961212335607290, −4.96238096555750343599978704627, −3.98773993375463103788842888976, −0.82031345231870499430800120211, 1.754319322982875280586770339813, 2.74662441715914858723088741958, 4.74162534858445271972354231253, 5.90066121933486171248387316949, 7.19668095026387570764992184552, 8.90214018865317276061785653994, 10.03962468709834718520058479552, 11.40058269814775638436843361554, 11.70479911160817989086443525384, 13.16633924652398304368393653079, 13.967781386865573956404982742818, 15.42183270973069372455285208445, 17.1992317306883543892116936071, 17.955436174842484445200121897394, 18.7260046544100141189732235982, 19.505148938154923570467083237805, 21.226213009428459813984172406525, 21.969545462489193355576640138897, 22.57279029009529551066511503691, 23.79139868176945222603186950945, 24.9041303687988980090824968305, 26.25334172964492385165033004761, 27.26361184399266831854708761369, 28.593559980849862276616600546411, 28.829075629735160897714490692667

Graph of the $Z$-function along the critical line