Properties

Degree 1
Conductor $ 11^{2} $
Sign $-0.152 + 0.988i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.254 + 0.967i)2-s + (−0.809 − 0.587i)3-s + (−0.870 − 0.491i)4-s + (−0.985 − 0.170i)5-s + (0.774 − 0.633i)6-s + (0.974 + 0.226i)7-s + (0.696 − 0.717i)8-s + (0.309 + 0.951i)9-s + (0.415 − 0.909i)10-s + (0.415 + 0.909i)12-s + (−0.736 + 0.676i)13-s + (−0.466 + 0.884i)14-s + (0.696 + 0.717i)15-s + (0.516 + 0.856i)16-s + (−0.0285 + 0.999i)17-s + (−0.998 + 0.0570i)18-s + ⋯
L(s,χ)  = 1  + (−0.254 + 0.967i)2-s + (−0.809 − 0.587i)3-s + (−0.870 − 0.491i)4-s + (−0.985 − 0.170i)5-s + (0.774 − 0.633i)6-s + (0.974 + 0.226i)7-s + (0.696 − 0.717i)8-s + (0.309 + 0.951i)9-s + (0.415 − 0.909i)10-s + (0.415 + 0.909i)12-s + (−0.736 + 0.676i)13-s + (−0.466 + 0.884i)14-s + (0.696 + 0.717i)15-s + (0.516 + 0.856i)16-s + (−0.0285 + 0.999i)17-s + (−0.998 + 0.0570i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 121 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (-0.152 + 0.988i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 121 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (-0.152 + 0.988i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(121\)    =    \(11^{2}\)
\( \varepsilon \)  =  $-0.152 + 0.988i$
motivic weight  =  \(0\)
character  :  $\chi_{121} (59, \cdot )$
Sato-Tate  :  $\mu(55)$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((1,\ 121,\ (0:\ ),\ -0.152 + 0.988i)\)
\(L(\chi,\frac{1}{2})\)  \(\approx\)  \(0.3416768138 + 0.3984782970i\)
\(L(\frac12,\chi)\)  \(\approx\)  \(0.3416768138 + 0.3984782970i\)
\(L(\chi,1)\)  \(\approx\)  \(0.5523547275 + 0.2580757826i\)
\(L(1,\chi)\)  \(\approx\)  \(0.5523547275 + 0.2580757826i\)

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−28.5679190232794381723577278989, −27.7718439213849439004872909177, −27.00018175399518713425289255200, −26.54160638416058939984242264308, −24.47305114885090236246375376981, −23.32942484695988658257796732434, −22.56317359610066672607973576099, −21.654446960883474860728183057, −20.512012485210336956612650626302, −19.82719264379723364146720038698, −18.32245149180193507724467438774, −17.682873393772740237156330339284, −16.50464900184599871789431068298, −15.30894308909994073535602737305, −14.08602082804170248162150157787, −12.37191032304943392299987804628, −11.655294838672648320201414030946, −10.86677193511196771499859644028, −9.86456813726525415047200175283, −8.42086868349999307040844253178, −7.24387861199449902375887845237, −5.04610483835662400756713109162, −4.36796967418061160023805276316, −2.91130424986653206875725330513, −0.68286394556516333799056509170, 1.43325435237717705098739884206, 4.286892641077362355141876437387, 5.23747093627714548910467011092, 6.54326047841344280668169786051, 7.7307145496623132858997155671, 8.31870435373036669449841220644, 10.10481841425301385111045948064, 11.51718663563461857340779679647, 12.32182937987099560158692298974, 13.802264101074041283838968701331, 14.91550308296171805333845937378, 15.98712880101742757502363378790, 16.96753945473805378988875773699, 17.80328941072809657110751825383, 18.84622718726758925282736524924, 19.6446103695895940948517188539, 21.50309119167984123841670440881, 22.63466201171309111524741873422, 23.623794752719707021396596434015, 24.16262808293689034057968849053, 24.91192074114493419178130369220, 26.44350596708551387778938294051, 27.40563318411715886724878234819, 28.01016798732310681306838259495, 29.05158456506500395613594529413

Graph of the $Z$-function along the critical line