Properties

Degree 1
Conductor $ 13 \cdot 89 $
Sign $-0.994 - 0.100i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  − 2-s + (−0.707 + 0.707i)3-s + 4-s i·5-s + (0.707 − 0.707i)6-s + (0.707 − 0.707i)7-s − 8-s i·9-s + i·10-s + 11-s + (−0.707 + 0.707i)12-s + (−0.707 + 0.707i)14-s + (0.707 + 0.707i)15-s + 16-s + i·17-s + i·18-s + ⋯
L(s,χ)  = 1  − 2-s + (−0.707 + 0.707i)3-s + 4-s i·5-s + (0.707 − 0.707i)6-s + (0.707 − 0.707i)7-s − 8-s i·9-s + i·10-s + 11-s + (−0.707 + 0.707i)12-s + (−0.707 + 0.707i)14-s + (0.707 + 0.707i)15-s + 16-s + i·17-s + i·18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 1157 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (-0.994 - 0.100i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 1157 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (-0.994 - 0.100i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(1157\)    =    \(13 \cdot 89\)
\( \varepsilon \)  =  $-0.994 - 0.100i$
motivic weight  =  \(0\)
character  :  $\chi_{1157} (12, \cdot )$
Sato-Tate  :  $\mu(8)$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((1,\ 1157,\ (1:\ ),\ -0.994 - 0.100i)\)
\(L(\chi,\frac{1}{2})\)  \(\approx\)  \(0.01250271009 - 0.2478568358i\)
\(L(\frac12,\chi)\)  \(\approx\)  \(0.01250271009 - 0.2478568358i\)
\(L(\chi,1)\)  \(\approx\)  \(0.5622349348 - 0.05189172092i\)
\(L(1,\chi)\)  \(\approx\)  \(0.5622349348 - 0.05189172092i\)

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−21.41387186706618712174424541406, −20.62441113507702189198734549890, −19.450998079321124603381931864279, −18.951070750870058439763316592513, −18.37905728562898864324075900003, −17.6923080599576544603175220343, −17.18142220305319983695843076907, −16.23837541254205957245587621129, −15.38499479659994531997550011320, −14.51515583878176045907371185831, −13.85349404447327337974418662497, −12.35033359986031898565855748087, −11.8074125016009192129248093169, −11.31636444853169976254809832682, −10.45192485456525944878065034490, −9.68598234452367133213519418683, −8.49511172442248039111574233201, −7.90088071656521156067083544468, −6.95149732550308750851922328864, −6.34458350322312393834530931238, −5.690886259475388000036782853054, −4.30691993353464459699381228647, −2.76733149071925734062832696643, −2.10774743994939443810775595351, −1.16694138167566379145777942969, 0.088470492203278573993212647387, 1.08994457893913973627115358139, 1.76310150389506701403069861921, 3.55890730892933107201995235990, 4.326921782248230626004479597, 5.24112353630188571525266007427, 6.237548143537354476139655620877, 7.00580335011702837768612607239, 8.205426241387687409460676122799, 8.793066216243663255908814337302, 9.57159892483424536347175231315, 10.4557511649122029654948346492, 11.012485807309137598111269160272, 11.962466897821503206877593915567, 12.387294708085437450187985324473, 13.76762068377419383727319924954, 14.80452703173539929887548077581, 15.56757876264866619898204193975, 16.32139485096787977351307617567, 17.146215641261704678245357763167, 17.297898869966958880796211774437, 18.00928553858390418087302708909, 19.42485190872758773652182051319, 19.901638457278533158797946556459, 20.60517508230386097481083292275

Graph of the $Z$-function along the critical line