Properties

Degree 1
Conductor $ 2^{2} \cdot 283 $
Sign $1$
Motivic weight 0
Primitive yes
Self-dual yes
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + 3-s − 5-s − 7-s + 9-s − 11-s + 13-s − 15-s − 17-s + 19-s − 21-s − 23-s + 25-s + 27-s + 29-s + 31-s − 33-s + 35-s − 37-s + 39-s + 41-s + 43-s − 45-s + 47-s + 49-s − 51-s − 53-s + 55-s + ⋯
L(s,χ)  = 1  + 3-s − 5-s − 7-s + 9-s − 11-s + 13-s − 15-s − 17-s + 19-s − 21-s − 23-s + 25-s + 27-s + 29-s + 31-s − 33-s + 35-s − 37-s + 39-s + 41-s + 43-s − 45-s + 47-s + 49-s − 51-s − 53-s + 55-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 1132 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & \, \Lambda(\chi,1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 1132 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & \, \Lambda(1-s,\chi) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(1132\)    =    \(2^{2} \cdot 283\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(0\)
character  :  $\chi_{1132} (1131, \cdot )$
Sato-Tate  :  $\mu(2)$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(1,\ 1132,\ (0:\ ),\ 1)$
$L(\chi,\frac{1}{2})$  $\approx$  $1.540528178$
$L(\frac12,\chi)$  $\approx$  $1.540528178$
$L(\chi,1)$  $\approx$  1.155462955
$L(1,\chi)$  $\approx$  1.155462955

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−21.10598889372569795326063608762, −20.38975334141527801898801611406, −19.83711738017582028588880086682, −19.1016860388706359114637763410, −18.52521625334742003785855268116, −17.68871109921855861732812478240, −16.12023320353729699417655601421, −15.73152220866103473699271377746, −15.554809872248463945272973551997, −14.141936171065846490281989555765, −13.59182655096039912530571630479, −12.77517811546835958468772067188, −12.08941185804149295298204320432, −10.92476640429911759216709171941, −10.2024451759444396224560995908, −9.25099405288814290540619941517, −8.47215007726050387721947336691, −7.80587281782518085782488597014, −6.995192434637311778612364540450, −6.084709574800303173844926626228, −4.70629837557771193784137595749, −3.86093941991935579209550541814, −3.14372118232533964394987917531, −2.3693945378061778078438175524, −0.821063992085654819976009985676, 0.821063992085654819976009985676, 2.3693945378061778078438175524, 3.14372118232533964394987917531, 3.86093941991935579209550541814, 4.70629837557771193784137595749, 6.084709574800303173844926626228, 6.995192434637311778612364540450, 7.80587281782518085782488597014, 8.47215007726050387721947336691, 9.25099405288814290540619941517, 10.2024451759444396224560995908, 10.92476640429911759216709171941, 12.08941185804149295298204320432, 12.77517811546835958468772067188, 13.59182655096039912530571630479, 14.141936171065846490281989555765, 15.554809872248463945272973551997, 15.73152220866103473699271377746, 16.12023320353729699417655601421, 17.68871109921855861732812478240, 18.52521625334742003785855268116, 19.1016860388706359114637763410, 19.83711738017582028588880086682, 20.38975334141527801898801611406, 21.10598889372569795326063608762

Graph of the $Z$-function along the critical line