Properties

Degree 1
Conductor 11
Sign $0.794 - 0.606i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.309 − 0.951i)2-s + (−0.809 + 0.587i)3-s + (−0.809 − 0.587i)4-s + (0.309 + 0.951i)5-s + (0.309 + 0.951i)6-s + (−0.809 − 0.587i)7-s + (−0.809 + 0.587i)8-s + (0.309 − 0.951i)9-s + 10-s + 12-s + (0.309 − 0.951i)13-s + (−0.809 + 0.587i)14-s + (−0.809 − 0.587i)15-s + (0.309 + 0.951i)16-s + (0.309 + 0.951i)17-s + (−0.809 − 0.587i)18-s + ⋯
L(s,χ)  = 1  + (0.309 − 0.951i)2-s + (−0.809 + 0.587i)3-s + (−0.809 − 0.587i)4-s + (0.309 + 0.951i)5-s + (0.309 + 0.951i)6-s + (−0.809 − 0.587i)7-s + (−0.809 + 0.587i)8-s + (0.309 − 0.951i)9-s + 10-s + 12-s + (0.309 − 0.951i)13-s + (−0.809 + 0.587i)14-s + (−0.809 − 0.587i)15-s + (0.309 + 0.951i)16-s + (0.309 + 0.951i)17-s + (−0.809 − 0.587i)18-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 11 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.794 - 0.606i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 11 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.794 - 0.606i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(11\)
\( \varepsilon \)  =  $0.794 - 0.606i$
motivic weight  =  \(0\)
character  :  $\chi_{11} (3, \cdot )$
Sato-Tate  :  $\mu(5)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 11,\ (0:\ ),\ 0.794 - 0.606i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.4586229999 - 0.1550664788i$
$L(\frac12,\chi)$  $\approx$  $0.4586229999 - 0.1550664788i$
$L(\chi,1)$  $\approx$  0.7250693190 - 0.1998680382i
$L(1,\chi)$  $\approx$  0.7250693190 - 0.1998680382i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−45.39463594395501975969744807702, −44.56765680602640214369468348421, −42.899090013539892090284322164020, −41.23125931567637554417735242172, −40.60933246340791064114988799240, −39.08913821171983707731225893848, −36.30546533630583691375233672495, −35.46982735482229339989370478080, −34.09991038060261382498068251526, −32.66700911823403514660581948907, −31.25865240735452785918819107938, −29.20335415146647226619136605636, −27.84377795446691855174647964583, −25.56417383676554059016327182044, −24.39768465362899944342326661126, −23.10346608245067381762829290284, −21.582011399172421619050999930936, −18.75843000584654520807742707215, −17.08321428147369679317872020542, −16.00036570903338122322075620004, −13.458305030994073524444602358088, −12.24620851989253075343167730192, −9.005712909958607941868114994670, −6.70621979183662888694755223132, −5.13369962695377616120259659427, 3.610040431481681825088887609117, 6.031809302694153993116837471997, 9.968986597464014358784736223774, 10.91936691398131290146712763749, 12.936436403843608731167774240940, 14.99397619489517942605272840683, 17.33108585992351038226176172724, 19.009840214653417017485996057466, 20.971032806510044860068813509656, 22.421707347750038595969581921863, 23.19330453707956327421809503410, 26.248122472265924935457925061771, 27.67656102096692136867646567071, 29.21369696511081988117988557045, 30.14740142621094175361038152744, 32.27324327208079803820297211333, 33.40414126952326206289051904017, 35.23358256653947003802658538966, 37.2745777994939241434217316583, 38.537390547170970142134678797481, 39.47811011858490619376853346972, 40.928978128840741705820733145210, 42.2813381913511558130191347551, 44.87521159907991242916728260552, 45.63392199506539227555534305144

Graph of the $Z$-function along the critical line