Properties

Degree $1$
Conductor $103$
Sign $-0.948 - 0.315i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.552 + 0.833i)2-s + (−0.850 + 0.526i)3-s + (−0.389 + 0.920i)4-s + (−0.952 − 0.303i)5-s + (−0.908 − 0.417i)6-s + (0.332 + 0.943i)7-s + (−0.982 + 0.183i)8-s + (0.445 − 0.895i)9-s + (−0.273 − 0.961i)10-s + (−0.998 + 0.0615i)11-s + (−0.153 − 0.988i)12-s + (−0.982 − 0.183i)13-s + (−0.602 + 0.798i)14-s + (0.969 − 0.243i)15-s + (−0.696 − 0.717i)16-s + (−0.908 + 0.417i)17-s + ⋯
L(s,χ)  = 1  + (0.552 + 0.833i)2-s + (−0.850 + 0.526i)3-s + (−0.389 + 0.920i)4-s + (−0.952 − 0.303i)5-s + (−0.908 − 0.417i)6-s + (0.332 + 0.943i)7-s + (−0.982 + 0.183i)8-s + (0.445 − 0.895i)9-s + (−0.273 − 0.961i)10-s + (−0.998 + 0.0615i)11-s + (−0.153 − 0.988i)12-s + (−0.982 − 0.183i)13-s + (−0.602 + 0.798i)14-s + (0.969 − 0.243i)15-s + (−0.696 − 0.717i)16-s + (−0.908 + 0.417i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 103 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (-0.948 - 0.315i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 103 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (-0.948 - 0.315i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(103\)
Sign: $-0.948 - 0.315i$
Motivic weight: \(0\)
Character: $\chi_{103} (68, \cdot )$
Sato-Tate group: $\mu(51)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 103,\ (0:\ ),\ -0.948 - 0.315i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(-0.08507812810 + 0.5251244757i\)
\(L(\frac12,\chi)\) \(\approx\) \(-0.08507812810 + 0.5251244757i\)
\(L(\chi,1)\) \(\approx\) \(0.4645493177 + 0.5430182857i\)
\(L(1,\chi)\) \(\approx\) \(0.4645493177 + 0.5430182857i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−29.18744362856822601776510450218, −28.64847234538053781771830444437, −27.20411278298005568527321002150, −26.75527679605884609718860816643, −24.38420320555338429174127600250, −23.88633272861873242401632549667, −22.8733180448756914605147125629, −22.31157431313003558057087089109, −20.806102977195917618984280372625, −19.81957431961992643498129917204, −18.80676038666306257187556015914, −17.92719204563573427049508196148, −16.511564076848084831385323161293, −15.215033836867520214409571734535, −13.88275623320648376501032705839, −12.858217748357201674987500576500, −11.753786712174194921013192109164, −11.01300467588240849722028413992, −10.05839919551930052705209722377, −7.873225393341688111123112596764, −6.81633107481187680283129183576, −5.13977181645768240686760614029, −4.20224090372079612879989938342, −2.44923933374527291725344338351, −0.48508699896719026057865383216, 3.17980284864303815931234048417, 4.833499161841192284003747507088, 5.23777809730709445207156494658, 6.86443930301995317702622795807, 8.07979107615386788158326312544, 9.33130206113963199556079046742, 11.16456172403989871568464737658, 12.10194602798016705978875512616, 12.96671694596107660270513227488, 14.89646158266677921878310339338, 15.50923763739175738045729744839, 16.25672076095989376481393446134, 17.51569378026769927620997269510, 18.37133837519676998518445072993, 20.13680621323771904355904817910, 21.53372983218546735376178890820, 22.08488281941147336945384641923, 23.31756199319869603206648004726, 23.94935716952449101952183622885, 24.90756276800891340643244666706, 26.46239333959993854009497125555, 27.14331513865616671569807213862, 28.161840487473463908507478160680, 29.19629542233549468721861093709, 30.86372986451147707810692789224

Graph of the $Z$-function along the critical line