Properties

Degree 1
Conductor 103
Sign $-0.643 + 0.765i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.602 + 0.798i)2-s + (0.445 + 0.895i)3-s + (−0.273 − 0.961i)4-s + (0.0922 + 0.995i)5-s + (−0.982 − 0.183i)6-s + (0.932 − 0.361i)7-s + (0.932 + 0.361i)8-s + (−0.602 + 0.798i)9-s + (−0.850 − 0.526i)10-s + (−0.602 + 0.798i)11-s + (0.739 − 0.673i)12-s + (0.932 − 0.361i)13-s + (−0.273 + 0.961i)14-s + (−0.850 + 0.526i)15-s + (−0.850 + 0.526i)16-s + (−0.982 + 0.183i)17-s + ⋯
L(s,χ)  = 1  + (−0.602 + 0.798i)2-s + (0.445 + 0.895i)3-s + (−0.273 − 0.961i)4-s + (0.0922 + 0.995i)5-s + (−0.982 − 0.183i)6-s + (0.932 − 0.361i)7-s + (0.932 + 0.361i)8-s + (−0.602 + 0.798i)9-s + (−0.850 − 0.526i)10-s + (−0.602 + 0.798i)11-s + (0.739 − 0.673i)12-s + (0.932 − 0.361i)13-s + (−0.273 + 0.961i)14-s + (−0.850 + 0.526i)15-s + (−0.850 + 0.526i)16-s + (−0.982 + 0.183i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 103 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (-0.643 + 0.765i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 103 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (-0.643 + 0.765i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(103\)
\( \varepsilon \)  =  $-0.643 + 0.765i$
motivic weight  =  \(0\)
character  :  $\chi_{103} (23, \cdot )$
Sato-Tate  :  $\mu(17)$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((1,\ 103,\ (0:\ ),\ -0.643 + 0.765i)\)
\(L(\chi,\frac{1}{2})\)  \(\approx\)  \(0.3755029153 + 0.8065135169i\)
\(L(\frac12,\chi)\)  \(\approx\)  \(0.3755029153 + 0.8065135169i\)
\(L(\chi,1)\)  \(\approx\)  \(0.6651794975 + 0.6332341286i\)
\(L(1,\chi)\)  \(\approx\)  \(0.6651794975 + 0.6332341286i\)

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−29.2277732644412525232681541064, −28.644096490158395271793497026859, −27.54608863628002735379759269624, −26.446900343929606059918948784143, −25.28892015347564615227582503132, −24.410127045667098770595061882672, −23.47141240028799331144929662654, −21.672948282529068464298194136029, −20.74233794236017493805961825145, −20.12057971260340650096557469388, −18.78983907485672880688798745875, −18.136123423148221626192156938684, −17.09321481165849499513489312690, −15.79591542399222767530465511898, −13.85256245041753597783962553827, −13.20419618517115270994945104625, −11.972974659509039570215049402120, −11.19521239261523937383133115179, −9.34862012039191773625259126671, −8.42055761806393024718582234388, −7.79570079974489125268165727373, −5.77260155068789358726301252115, −3.9995757657824352128288993579, −2.27902694535024426453932567501, −1.17567859798919861865275415529, 2.25608619753771524378677105248, 4.17934145067616032954499344198, 5.41753733351820716984887740039, 7.00727779936844812388516938691, 8.0726075412503567934519134541, 9.21186459406482860489432196288, 10.63756495955161224637008323145, 10.88502073324069292696810158488, 13.57103374265704863193968732662, 14.514500965154560834323602092147, 15.27687174352026059634782121761, 16.15129113081687937469501771564, 17.721238463641696454040030543187, 18.15907450106818350915221475794, 19.74623236415982044765882612512, 20.5943542958242903862499638578, 21.98857026778235795930744483098, 22.97999778788272461197115285886, 24.08055318821638468879424237517, 25.474100102771091175579806889898, 26.12984899390833832631132418671, 26.87548838717958326612480338748, 27.7773240555771884594830272636, 28.721017363306198769446646020893, 30.51831961841773245389956608594

Graph of the $Z$-function along the critical line