Properties

Degree 1
Conductor $ 13 \cdot 79 $
Sign $0.252 - 0.967i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.5 + 0.866i)4-s + 5-s + (0.5 − 0.866i)6-s + (0.5 − 0.866i)7-s + 8-s + (−0.5 + 0.866i)9-s + (−0.5 − 0.866i)10-s + (−0.5 − 0.866i)11-s − 12-s − 14-s + (0.5 + 0.866i)15-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + 18-s + ⋯
L(s,χ)  = 1  + (−0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.5 + 0.866i)4-s + 5-s + (0.5 − 0.866i)6-s + (0.5 − 0.866i)7-s + 8-s + (−0.5 + 0.866i)9-s + (−0.5 − 0.866i)10-s + (−0.5 − 0.866i)11-s − 12-s − 14-s + (0.5 + 0.866i)15-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + 18-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 1027 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (0.252 - 0.967i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 1027 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (0.252 - 0.967i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(1027\)    =    \(13 \cdot 79\)
\( \varepsilon \)  =  $0.252 - 0.967i$
motivic weight  =  \(0\)
character  :  $\chi_{1027} (789, \cdot )$
Sato-Tate  :  $\mu(6)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 1027,\ (1:\ ),\ 0.252 - 0.967i)$
$L(\chi,\frac{1}{2})$  $\approx$  $1.789790339 - 1.382493301i$
$L(\frac12,\chi)$  $\approx$  $1.789790339 - 1.382493301i$
$L(\chi,1)$  $\approx$  1.134315737 - 0.3117477386i
$L(1,\chi)$  $\approx$  1.134315737 - 0.3117477386i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−21.41482489697261847298719473253, −20.83566104107794429918205692896, −19.61051663148635759134349831190, −19.113385932905586561734425915123, −18.16655873653685297058444306982, −17.57913496436403965944536988820, −17.414871171985021879110011962701, −15.97469577780219722272438703936, −15.07778219914946303361814225361, −14.629656892248478915808645296629, −13.75194967092579549725073065312, −13.04958503384436498660043417481, −12.275749186514008946883952163625, −11.04876137439383280047592092210, −9.90846758324527026901669662393, −9.346881135707470706787284004960, −8.43135245443983453405244004780, −7.85884563673110957571223024522, −6.89146017160868379325805373134, −6.05098610501039089102294952551, −5.48495984711072600214823673857, −4.37725810215353479586591150008, −2.57517703348446871365883306578, −1.963705026551594020484771748355, −1.02361509296937203930626443028, 0.56459407830679282688788838814, 1.692758077205795011579785521163, 2.71358188448537276929938924066, 3.419845477607792301320002585900, 4.53173675269345580203724937254, 5.169443784800650507719848631390, 6.50659613684769846082029735741, 7.97340577136041616550040679223, 8.3044827856216847579642605128, 9.41052357623254213955793231327, 10.05280907210437735263789865744, 10.621179549908285531780839139759, 11.25076838648658357127020740902, 12.46443099958007499409377397190, 13.50695098553085687281521246279, 13.9830361368520331958611924719, 14.58168060868351783589267731549, 16.14226594734704346770352758979, 16.58527361398285407960172440875, 17.31304587029646719813196800009, 18.23137757409994706058595649398, 18.9078843061918440455586437278, 19.903987002450951856665068516081, 20.74707331645214758144802931555, 20.91487464193168659216578909236

Graph of the $Z$-function along the critical line