Properties

Degree 1
Conductor 101
Sign $-0.433 + 0.901i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.998 + 0.0627i)2-s + (0.368 − 0.929i)3-s + (0.992 − 0.125i)4-s + (0.0627 − 0.998i)5-s + (−0.309 + 0.951i)6-s + (−0.844 + 0.535i)7-s + (−0.982 + 0.187i)8-s + (−0.728 − 0.684i)9-s + i·10-s + (−0.684 + 0.728i)11-s + (0.248 − 0.968i)12-s + (−0.535 + 0.844i)13-s + (0.809 − 0.587i)14-s + (−0.904 − 0.425i)15-s + (0.968 − 0.248i)16-s + (−0.309 − 0.951i)17-s + ⋯
L(s,χ)  = 1  + (−0.998 + 0.0627i)2-s + (0.368 − 0.929i)3-s + (0.992 − 0.125i)4-s + (0.0627 − 0.998i)5-s + (−0.309 + 0.951i)6-s + (−0.844 + 0.535i)7-s + (−0.982 + 0.187i)8-s + (−0.728 − 0.684i)9-s + i·10-s + (−0.684 + 0.728i)11-s + (0.248 − 0.968i)12-s + (−0.535 + 0.844i)13-s + (0.809 − 0.587i)14-s + (−0.904 − 0.425i)15-s + (0.968 − 0.248i)16-s + (−0.309 − 0.951i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 101 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (-0.433 + 0.901i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 101 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (-0.433 + 0.901i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(101\)
\( \varepsilon \)  =  $-0.433 + 0.901i$
motivic weight  =  \(0\)
character  :  $\chi_{101} (50, \cdot )$
Sato-Tate  :  $\mu(100)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 101,\ (1:\ ),\ -0.433 + 0.901i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.02976226707 + 0.04735648999i$
$L(\frac12,\chi)$  $\approx$  $0.02976226707 + 0.04735648999i$
$L(\chi,1)$  $\approx$  0.5128599726 - 0.1660481759i
$L(1,\chi)$  $\approx$  0.5128599726 - 0.1660481759i

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−29.20405074652954347446513242334, −28.13557485909380438227563504106, −26.86286753148259686500212031767, −26.42217310133175683468430935450, −25.77800539459833076459192971639, −24.46479073269083105698672065090, −22.773821378510621483346945448471, −21.89483502613920291536186508832, −20.72749602385034378266848735690, −19.69195072496111125656971828272, −18.92484013810567150844367883235, −17.6104955671196960597967109000, −16.48615349094113524114347898296, −15.57320022218732177101491852761, −14.645103790818209398876161401102, −13.127633988561531622766716389458, −11.19434711354431428250688074023, −10.42346758309968448515678282146, −9.72228641425863277964452099099, −8.32024532545415568719376775698, −7.14895667407082208902287439340, −5.74497373307429545647453403900, −3.47596020896337376495649795620, −2.685596476844001355464978042495, −0.0305947437328368798455097751, 1.5865483682690610500451468593, 2.85324215287292407784607896527, 5.37321319259998892246808427316, 6.81875051344386640308698507835, 7.77304607905530778163518232307, 9.10416442568810692663824361058, 9.634246799494592962341442184889, 11.726829199350065676934069048424, 12.43741450146941167989799748698, 13.62537518853867080612508350712, 15.30699199393182251753190448997, 16.29257254283663914372828184483, 17.42817364132377091705090303443, 18.41533485690553380004014154544, 19.3574230917691859981726352029, 20.19091494666472701209354684001, 21.13582953706959912366795779620, 23.00109471039966883472080491703, 24.238665841984363922248826133310, 24.90709958184134206819520465973, 25.7234182543164126211714578775, 26.720143127763634300348929363795, 28.22710228012920808456001680314, 28.90483613991479274792995387891, 29.457809789425846748403915209303

Graph of the $Z$-function along the critical line