Properties

Degree 1
Conductor 101
Sign $0.985 - 0.170i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.876 − 0.481i)2-s + (0.992 + 0.125i)3-s + (0.535 + 0.844i)4-s + (0.876 − 0.481i)5-s + (−0.809 − 0.587i)6-s + (0.187 + 0.982i)7-s + (−0.0627 − 0.998i)8-s + (0.968 + 0.248i)9-s − 10-s + (−0.968 − 0.248i)11-s + (0.425 + 0.904i)12-s + (−0.187 + 0.982i)13-s + (0.309 − 0.951i)14-s + (0.929 − 0.368i)15-s + (−0.425 + 0.904i)16-s + (−0.809 + 0.587i)17-s + ⋯
L(s,χ)  = 1  + (−0.876 − 0.481i)2-s + (0.992 + 0.125i)3-s + (0.535 + 0.844i)4-s + (0.876 − 0.481i)5-s + (−0.809 − 0.587i)6-s + (0.187 + 0.982i)7-s + (−0.0627 − 0.998i)8-s + (0.968 + 0.248i)9-s − 10-s + (−0.968 − 0.248i)11-s + (0.425 + 0.904i)12-s + (−0.187 + 0.982i)13-s + (0.309 − 0.951i)14-s + (0.929 − 0.368i)15-s + (−0.425 + 0.904i)16-s + (−0.809 + 0.587i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 101 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.985 - 0.170i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 101 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.985 - 0.170i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(101\)
\( \varepsilon \)  =  $0.985 - 0.170i$
motivic weight  =  \(0\)
character  :  $\chi_{101} (47, \cdot )$
Sato-Tate  :  $\mu(50)$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((1,\ 101,\ (0:\ ),\ 0.985 - 0.170i)\)
\(L(\chi,\frac{1}{2})\)  \(\approx\)  \(1.036170861 - 0.08912721614i\)
\(L(\frac12,\chi)\)  \(\approx\)  \(1.036170861 - 0.08912721614i\)
\(L(\chi,1)\)  \(\approx\)  \(1.039136687 - 0.1002765246i\)
\(L(1,\chi)\)  \(\approx\)  \(1.039136687 - 0.1002765246i\)

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−29.60320335306546269157295868169, −29.18346467327602902555649619943, −27.37893070000854515444800601349, −26.71720651074206447674718824708, −25.75594096379849743331670154157, −25.1772980263647079508414897825, −24.0657016341470930961331346283, −22.88966929162386177310124817677, −21.074385336966127408409310456563, −20.38082352739017891622434861423, −19.317009264774369876017386304858, −18.122617015338931044378766695436, −17.53140873854603361900754508739, −16.03305465666497435642287827835, −14.91781245726843880810550215830, −14.02372288487951248650602057034, −13.01069336128386061293640310901, −10.650834646149841242095881296970, −10.14515943250716218450500640376, −8.876691302067114625225399325915, −7.631136877112663658714059111477, −6.87134288673926634587072616973, −5.18103551623355675409022429696, −2.99102510638002305528981887147, −1.6420593964706382511743934773, 1.95272867382749856251534942395, 2.65799355751165519662998722068, 4.620777412372634187980116010017, 6.53688089985247246787870340358, 8.1993369770296009419532719439, 8.935104078737103277855569748407, 9.75596024520057926150110477613, 11.08186724138045390254850907989, 12.66470354364917880296035918427, 13.43606911566493642433952336245, 15.03765326672115705727269818923, 16.06713699149771563451229744550, 17.35073262379491553290346444870, 18.480851289959087489960057436097, 19.23128407783151928179409035252, 20.47894509260579252478442801179, 21.364452989567056323458283644578, 21.76692348931841629733462163510, 24.29520815942851807608926270357, 24.863594528431841422221852571005, 26.081613285612851001020274978035, 26.44714715149205564145927884240, 28.027497761808979891662752390674, 28.64824366844807251741877257800, 29.70992808462503245421640162088

Graph of the $Z$-function along the critical line