Properties

Degree $3$
Conductor $29241$
Sign $1$
Motivic weight $0$
Arithmetic yes
Primitive yes
Self-dual yes

Related objects

Learn more

Normalization:  

(not yet available)

Dirichlet series

$L(s,\rho)$  = 1  + 3-s + 8-s + 9-s − 17-s + 19-s + 24-s + 27-s − 37-s − 51-s − 53-s + 57-s + 64-s − 71-s + 72-s − 73-s + 81-s − 89-s − 107-s + 3·109-s − 111-s + 125-s − 127-s − 136-s + 152-s − 153-s − 159-s − 163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 29241 ^{s/2} \, \Gamma_{\R}(s) \, \Gamma_{\R}(s+1)^{2} \, L(s,\rho)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(3\)
Conductor: \(29241\)    =    \(3^{4} \cdot 19^{2}\)
Sign: $1$
Arithmetic: yes
Primitive: yes
Self-dual: yes
Selberg data: \((3,\ 29241,\ (0, 1, 1:\ ),\ 1)\)

Particular Values

\[L(1/2,\rho) \approx 2.008121103\] \[L(1,\rho) \approx 1.574301910\]

Euler product

\(L(s,\rho) = \displaystyle\prod_p \ \prod_{j=1}^{3} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line