# Properties

 Degree 2 Conductor $2^{3} \cdot 11$ Sign $unknown$ Motivic weight 0 Primitive yes Self-dual no

# Related objects

(not yet available)

## Dirichlet series

 $L(s,\rho)$  = 1 + (−0.809 − 0.587i)2-s + (−0.499 + 1.53i)3-s + (0.309 + 0.951i)4-s + (1.30 − 0.951i)6-s + (0.309 − 0.951i)8-s + (−1.30 − 0.951i)9-s + (0.309 − 0.951i)11-s − 1.61·12-s + (−0.809 + 0.587i)16-s + (−0.5 + 0.363i)17-s + (0.500 + 1.53i)18-s + (0.190 − 0.587i)19-s + (−0.809 + 0.587i)22-s + (1.30 + 0.951i)24-s + (0.309 − 0.951i)25-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 88 ^{s/2} \, \Gamma_{\R}(s) \, \Gamma_{\R}(s+1) \, L(s,\rho)\cr =\mathstrut & \epsilon \cdot \overline{\Lambda(1-\overline{s})} \quad (\text{with }\epsilon \text{ unknown}) \end{aligned}

## Invariants

 $$d$$ = $$2$$ $$N$$ = $$88$$    =    $$2^{3} \cdot 11$$ $$\varepsilon$$ = $unknown$ primitive : yes self-dual : no Selberg data = $$(2,\ 88,\ (0, 1:\ ),\ 0)$$

## Euler product

\begin{aligned}L(s,\rho) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}

## Particular Values

Not enough information (Dirichlet series coefficients/sign of the functional equation) to compute special values.

## Imaginary part of the first few zeros on the critical line

Zeros not available.

## Graph of the $Z$-function along the critical line

Plot not available.