Properties

Degree 2
Conductor $ 2^{3} \cdot 11 $
Sign $unknown$
Motivic weight 0
Primitive yes
Self-dual no

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s,\rho)$  = 1  + (0.309 + 0.951i)2-s + (−0.5 − 0.363i)3-s + (−0.809 + 0.587i)4-s + (0.190 − 0.587i)6-s + (−0.809 − 0.587i)8-s + (−0.190 − 0.587i)9-s + (−0.809 − 0.587i)11-s + 0.618·12-s + (0.309 − 0.951i)16-s + (−0.499 + 1.53i)17-s + (0.499 − 0.363i)18-s + (1.30 + 0.951i)19-s + (0.309 − 0.951i)22-s + (0.190 + 0.587i)24-s + (−0.809 − 0.587i)25-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 88 ^{s/2} \, \Gamma_{\R}(s) \, \Gamma_{\R}(s+1) \, L(s,\rho)\cr =\mathstrut & \epsilon \cdot \overline{\Lambda(1-\overline{s})} \quad (\text{with }\epsilon \text{ unknown}) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(88\)    =    \(2^{3} \cdot 11\)
\( \varepsilon \)  =  $unknown$
primitive  :  yes
self-dual  :  no
Selberg data  =  \((2,\ 88,\ (0, 1:\ ),\ 0)\)

Euler product

\[\begin{aligned}L(s,\rho) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Particular Values

Not enough information (Dirichlet series coefficients/sign of the functional equation) to compute special values.

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.