Properties

Degree 2
Conductor 79
Sign $1$
Motivic weight 0
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 1.61·2-s + 1.61·4-s + 0.618·5-s − 8-s + 9-s − 1.00·10-s − 1.61·11-s − 1.61·13-s − 1.61·18-s + 0.618·19-s + 1.00·20-s + 2.61·22-s + 0.618·23-s − 0.618·25-s + 2.61·26-s − 1.61·31-s + 32-s + 1.61·36-s − 1.00·38-s − 0.618·40-s − 2.61·44-s + 0.618·45-s − 1.00·46-s + 49-s + 0.999·50-s − 2.61·52-s − 1.00·55-s + ⋯
L(s)  = 1  − 1.61·2-s + 1.61·4-s + 0.618·5-s − 8-s + 9-s − 1.00·10-s − 1.61·11-s − 1.61·13-s − 1.61·18-s + 0.618·19-s + 1.00·20-s + 2.61·22-s + 0.618·23-s − 0.618·25-s + 2.61·26-s − 1.61·31-s + 32-s + 1.61·36-s − 1.00·38-s − 0.618·40-s − 2.61·44-s + 0.618·45-s − 1.00·46-s + 49-s + 0.999·50-s − 2.61·52-s − 1.00·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 79 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 79 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(79\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(0\)
character  :  $\chi_{79} (78, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 79,\ (\ :0),\ 1)\)
\(L(\frac{1}{2})\)  \(\approx\)  \(0.2888166339\)
\(L(\frac12)\)  \(\approx\)  \(0.2888166339\)
\(L(1)\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \neq 79$,\(F_p(T)\) is a polynomial of degree 2. If $p = 79$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad79 \( 1 - T \)
good2 \( 1 + 1.61T + T^{2} \)
3 \( 1 - T^{2} \)
5 \( 1 - 0.618T + T^{2} \)
7 \( 1 - T^{2} \)
11 \( 1 + 1.61T + T^{2} \)
13 \( 1 + 1.61T + T^{2} \)
17 \( 1 - T^{2} \)
19 \( 1 - 0.618T + T^{2} \)
23 \( 1 - 0.618T + T^{2} \)
29 \( 1 - T^{2} \)
31 \( 1 + 1.61T + T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 - T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - 0.618T + T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - 0.618T + T^{2} \)
83 \( 1 - 2T + T^{2} \)
89 \( 1 + 1.61T + T^{2} \)
97 \( 1 - 0.618T + T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−15.09438089440591022273049327848, −13.49476825961692915439080389739, −12.41280998218477785723439677217, −10.84468432527915440022069005515, −10.00582281033173329485446747233, −9.369771806913826376759339060543, −7.80057654256192655708865026236, −7.13654942825154090841373972766, −5.19349650437579468072287387020, −2.25042492444233676394569070777, 2.25042492444233676394569070777, 5.19349650437579468072287387020, 7.13654942825154090841373972766, 7.80057654256192655708865026236, 9.369771806913826376759339060543, 10.00582281033173329485446747233, 10.84468432527915440022069005515, 12.41280998218477785723439677217, 13.49476825961692915439080389739, 15.09438089440591022273049327848

Graph of the $Z$-function along the critical line