Properties

Degree 2
Conductor $ 2^{6} \cdot 3^{2} \cdot 5^{2} $
Sign $unknown$
Motivic weight 0
Primitive yes
Self-dual no

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s,\rho)$  = 1  + 2i·11-s i·49-s + 2·59-s + 2·61-s + 2i·71-s + 2i·109-s − 3·121-s + 2i·131-s i·169-s − 2·179-s + 2·181-s − 2i·191-s + 2i·229-s − 2·239-s − 2·241-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 14400 ^{s/2} \, \Gamma_{\R}(s+1)^{2} \, L(s,\rho)\cr =\mathstrut & \epsilon \cdot \overline{\Lambda(1-\overline{s})} \quad (\text{with }\epsilon \text{ unknown}) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(14400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2}\)
\( \varepsilon \)  =  $unknown$
primitive  :  yes
self-dual  :  no
Selberg data  =  $(2,\ 14400,\ (1, 1:\ ),\ 0)$

Euler product

\[\begin{aligned} L(s,\rho) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Particular Values

Not enough information (Dirichlet series coefficients/sign of the functional equation) to compute special values.

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.