# Properties

 Degree 2 Conductor $2^{3} \cdot 3^{5}$ Sign $i$ Motivic weight 0 Primitive yes Self-dual no Analytic rank 0

# Related objects

## Dirichlet series

 L(s)  = 1 − 1.41i·5-s − 1.41i·11-s + 13-s + 1.41i·17-s − 19-s − 1.41i·23-s − 1.00·25-s − 31-s + 43-s − 49-s − 1.41i·53-s − 2.00·55-s − 1.41i·59-s + 61-s − 1.41i·65-s + ⋯
 L(s)  = 1 − 1.41i·5-s − 1.41i·11-s + 13-s + 1.41i·17-s − 19-s − 1.41i·23-s − 1.00·25-s − 31-s + 43-s − 49-s − 1.41i·53-s − 2.00·55-s − 1.41i·59-s + 61-s − 1.41i·65-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 1944 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 1944 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 $$d$$ = $$2$$ $$N$$ = $$1944$$    =    $$2^{3} \cdot 3^{5}$$ $$\varepsilon$$ = $i$ motivic weight = $$0$$ character : $\chi_{1944} (1457, \cdot )$ primitive : yes self-dual : no analytic rank = $$0$$ Selberg data = $$(2,\ 1944,\ (\ :0),\ i)$$ $$L(\frac{1}{2})$$ $$\approx$$ $$1.096361973$$ $$L(\frac12)$$ $$\approx$$ $$1.096361973$$ $$L(1)$$ not available $$L(1)$$ not available

## Euler product

$L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1}$where, for $p \notin \{2,\;3\}$,$$F_p(T)$$ is a polynomial of degree 2. If $p \in \{2,\;3\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 $$1$$
3 $$1$$
good5 $$1 + 1.41iT - T^{2}$$
7 $$1 + T^{2}$$
11 $$1 + 1.41iT - T^{2}$$
13 $$1 - T + T^{2}$$
17 $$1 - 1.41iT - T^{2}$$
19 $$1 + T + T^{2}$$
23 $$1 + 1.41iT - T^{2}$$
29 $$1 - T^{2}$$
31 $$1 + T + T^{2}$$
37 $$1 + T^{2}$$
41 $$1 - T^{2}$$
43 $$1 - T + T^{2}$$
47 $$1 - T^{2}$$
53 $$1 + 1.41iT - T^{2}$$
59 $$1 + 1.41iT - T^{2}$$
61 $$1 - T + T^{2}$$
67 $$1 + T + T^{2}$$
71 $$1 - 1.41iT - T^{2}$$
73 $$1 - T + T^{2}$$
79 $$1 - T + T^{2}$$
83 $$1 - 1.41iT - T^{2}$$
89 $$1 - T^{2}$$
97 $$1 + T + T^{2}$$
\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}