Properties

Degree 2
Conductor 103
Sign $1$
Motivic weight 0
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 1.61·2-s + 1.61·4-s + 0.618·7-s − 8-s + 9-s − 1.61·13-s − 1.00·14-s + 0.618·17-s − 1.61·18-s − 1.61·19-s − 1.61·23-s + 25-s + 2.61·26-s + 1.00·28-s + 0.618·29-s + 32-s − 1.00·34-s + 1.61·36-s + 2.61·38-s − 1.61·41-s + 2.61·46-s − 0.618·49-s − 1.61·50-s − 2.61·52-s − 0.618·56-s − 1.00·58-s + 0.618·59-s + ⋯
L(s)  = 1  − 1.61·2-s + 1.61·4-s + 0.618·7-s − 8-s + 9-s − 1.61·13-s − 1.00·14-s + 0.618·17-s − 1.61·18-s − 1.61·19-s − 1.61·23-s + 25-s + 2.61·26-s + 1.00·28-s + 0.618·29-s + 32-s − 1.00·34-s + 1.61·36-s + 2.61·38-s − 1.61·41-s + 2.61·46-s − 0.618·49-s − 1.61·50-s − 2.61·52-s − 0.618·56-s − 1.00·58-s + 0.618·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 103 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 103 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(103\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(0\)
character  :  $\chi_{103} (102, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 103,\ (\ :0),\ 1)\)
\(L(\frac{1}{2})\)  \(\approx\)  \(0.3101772644\)
\(L(\frac12)\)  \(\approx\)  \(0.3101772644\)
\(L(1)\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \neq 103$,\(F_p(T)\) is a polynomial of degree 2. If $p = 103$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad103 \( 1 - T \)
good2 \( 1 + 1.61T + T^{2} \)
3 \( 1 - T^{2} \)
5 \( 1 - T^{2} \)
7 \( 1 - 0.618T + T^{2} \)
11 \( 1 - T^{2} \)
13 \( 1 + 1.61T + T^{2} \)
17 \( 1 - 0.618T + T^{2} \)
19 \( 1 + 1.61T + T^{2} \)
23 \( 1 + 1.61T + T^{2} \)
29 \( 1 - 0.618T + T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 + 1.61T + T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 - T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 - 0.618T + T^{2} \)
61 \( 1 - 0.618T + T^{2} \)
67 \( 1 - T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 + 1.61T + T^{2} \)
83 \( 1 - 0.618T + T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 - 0.618T + T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−14.35488539200342705454252134633, −12.70894104994314844385392810633, −11.72604188680177212338039429439, −10.34214505526155332385890590804, −9.959707971151309180493693391976, −8.593356723596807581237004373057, −7.69809741917201771363481039022, −6.71017783955903441438614047649, −4.64753948580894546247106478607, −2.00946183109297238095017317494, 2.00946183109297238095017317494, 4.64753948580894546247106478607, 6.71017783955903441438614047649, 7.69809741917201771363481039022, 8.593356723596807581237004373057, 9.959707971151309180493693391976, 10.34214505526155332385890590804, 11.72604188680177212338039429439, 12.70894104994314844385392810633, 14.35488539200342705454252134633

Graph of the $Z$-function along the critical line