Properties

 Degree $1$ Conductor $91$ Sign $unknown$ Motivic weight $0$ Arithmetic yes Primitive yes Self-dual no

Related objects

(not yet available)

Dirichlet series

 $L(s,\rho)$  = 1 + (0.866 − 0.5i)2-s + (−0.499 + 0.866i)3-s + (0.499 − 0.866i)4-s + (0.866 − 0.5i)5-s + 0.999i·6-s − 0.999i·8-s + (−0.500 − 0.866i)9-s + (0.499 − 0.866i)10-s + (0.866 + 0.499i)11-s + (0.5 + 0.866i)12-s + 0.999i·15-s + (−0.5 − 0.866i)16-s + (0.499 − 0.866i)17-s + (−0.866 − 0.499i)18-s + (0.866 − 0.5i)19-s − 0.999i·20-s + ⋯

Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\rho)\cr =\mathstrut & \epsilon \cdot \overline{\Lambda(1-\overline{s})} \quad (\text{with }\epsilon \text{ not computed}) \end{aligned}

Invariants

 Degree: $$1$$ Conductor: $$91$$    =    $$7 \cdot 13$$ Sign: $unknown$ Arithmetic: yes Primitive: yes Self-dual: no Selberg data: $$(1,\ 91,\ (1:\ ),\ 0)$$

Particular Values

Not enough information (Dirichlet series coefficients/sign of the functional equation) to compute special values.

Euler product

$$L(s,\rho) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}$$

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.