Properties

Label 4-2878848-1.1-c1e2-0-9
Degree $4$
Conductor $2878848$
Sign $-1$
Analytic cond. $183.557$
Root an. cond. $3.68080$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s − 8-s + 9-s + 3·11-s + 12-s + 16-s + 4·17-s − 18-s + 19-s − 3·22-s − 24-s − 25-s + 27-s − 32-s + 3·33-s − 4·34-s + 36-s − 38-s − 11·43-s + 3·44-s + 48-s + 49-s + 50-s + 4·51-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.904·11-s + 0.288·12-s + 1/4·16-s + 0.970·17-s − 0.235·18-s + 0.229·19-s − 0.639·22-s − 0.204·24-s − 1/5·25-s + 0.192·27-s − 0.176·32-s + 0.522·33-s − 0.685·34-s + 1/6·36-s − 0.162·38-s − 1.67·43-s + 0.452·44-s + 0.144·48-s + 1/7·49-s + 0.141·50-s + 0.560·51-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2878848 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2878848 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2878848\)    =    \(2^{7} \cdot 3^{3} \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(183.557\)
Root analytic conductor: \(3.68080\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 2878848,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3$C_1$ \( 1 - T \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
17$C_1$$\times$$C_2$ \( ( 1 - T )( 1 - 3 T + p T^{2} ) \)
good5$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + p T^{2} ) \)
13$C_2^2$ \( 1 + 7 T^{2} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + T + p T^{2} ) \)
23$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 53 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 83 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
61$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 + 7 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 110 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 - 8 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 19 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.45578989288019135896077756618, −7.01662379241515117834417453348, −6.69677239834277945706983087327, −6.16780392122312587213348990985, −5.87370041008452867744729062589, −5.19018087010199286506133400362, −4.91856003682954245120569814580, −4.05728529269364458327803250519, −3.94258878630875933137679805516, −3.11312994413698073780781142937, −3.00950790433389335019302713929, −2.20515413095174031848826156180, −1.47551861632724679570109027241, −1.23392273324238793066202434858, 0, 1.23392273324238793066202434858, 1.47551861632724679570109027241, 2.20515413095174031848826156180, 3.00950790433389335019302713929, 3.11312994413698073780781142937, 3.94258878630875933137679805516, 4.05728529269364458327803250519, 4.91856003682954245120569814580, 5.19018087010199286506133400362, 5.87370041008452867744729062589, 6.16780392122312587213348990985, 6.69677239834277945706983087327, 7.01662379241515117834417453348, 7.45578989288019135896077756618

Graph of the $Z$-function along the critical line