Properties

Label 8-980e4-1.1-c3e4-0-5
Degree $8$
Conductor $922368160000$
Sign $1$
Analytic cond. $1.11781\times 10^{7}$
Root an. cond. $7.60406$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 40·9-s + 96·11-s + 216·25-s + 392·29-s − 2.28e3·71-s + 2.21e3·79-s − 258·81-s + 3.84e3·99-s − 2.58e3·109-s + 436·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 7.08e3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  + 1.48·9-s + 2.63·11-s + 1.72·25-s + 2.51·29-s − 3.81·71-s + 3.15·79-s − 0.353·81-s + 3.89·99-s − 2.27·109-s + 0.327·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 3.22·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + 0.000372·193-s + 0.000361·197-s + 0.000356·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 5^{4} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(1.11781\times 10^{7}\)
Root analytic conductor: \(7.60406\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 5^{4} \cdot 7^{8} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(7.469880455\)
\(L(\frac12)\) \(\approx\) \(7.469880455\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2^2$ \( 1 - 216 T^{2} + p^{6} T^{4} \)
7 \( 1 \)
good3$C_2^2$ \( ( 1 - 20 T^{2} + p^{6} T^{4} )^{2} \)
11$C_2$ \( ( 1 - 24 T + p^{3} T^{2} )^{4} \)
13$C_2^2$ \( ( 1 - 3544 T^{2} + p^{6} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 546 p T^{2} + p^{6} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 13252 T^{2} + p^{6} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 8490 T^{2} + p^{6} T^{4} )^{2} \)
29$C_2$ \( ( 1 - 98 T + p^{3} T^{2} )^{4} \)
31$C_2^2$ \( ( 1 + 57718 T^{2} + p^{6} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 41290 T^{2} + p^{6} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + 91242 T^{2} + p^{6} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 95638 T^{2} + p^{6} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 147670 T^{2} + p^{6} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 155158 T^{2} + p^{6} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 373012 T^{2} + p^{6} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 207448 T^{2} + p^{6} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 348022 T^{2} + p^{6} T^{4} )^{2} \)
71$C_2$ \( ( 1 + 570 T + p^{3} T^{2} )^{4} \)
73$C_2^2$ \( ( 1 - 611434 T^{2} + p^{6} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 554 T + p^{3} T^{2} )^{4} \)
83$C_2^2$ \( ( 1 - 1128580 T^{2} + p^{6} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 51438 T^{2} + p^{6} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + 4670 T^{2} + p^{6} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.72689000257927130964560055543, −6.67205068519397142969604947177, −6.35901297086045232665110883546, −6.22582781784321701429339699011, −6.05920442833017574415745601143, −5.52800899471934579558852476002, −5.38118310356915410502638123383, −5.18404901798509013445606818385, −4.64911855751366138853390427147, −4.62960349746326763278507862289, −4.45164522919248861003096956800, −4.25899393711871969241675574884, −3.86750792431483921180251363013, −3.82655269692551834975447049425, −3.42286870557201595723879750195, −3.07818340680556862238828397795, −2.91771730099772911493739243713, −2.59077916588506119237353675036, −2.23676703189619665262037330698, −1.79781906852303569471973259089, −1.44034301181900166392380457009, −1.20871395541835389230433028212, −1.14507777283922984657769050866, −0.811579819976201240688824162733, −0.27474950548510553694643330759, 0.27474950548510553694643330759, 0.811579819976201240688824162733, 1.14507777283922984657769050866, 1.20871395541835389230433028212, 1.44034301181900166392380457009, 1.79781906852303569471973259089, 2.23676703189619665262037330698, 2.59077916588506119237353675036, 2.91771730099772911493739243713, 3.07818340680556862238828397795, 3.42286870557201595723879750195, 3.82655269692551834975447049425, 3.86750792431483921180251363013, 4.25899393711871969241675574884, 4.45164522919248861003096956800, 4.62960349746326763278507862289, 4.64911855751366138853390427147, 5.18404901798509013445606818385, 5.38118310356915410502638123383, 5.52800899471934579558852476002, 6.05920442833017574415745601143, 6.22582781784321701429339699011, 6.35901297086045232665110883546, 6.67205068519397142969604947177, 6.72689000257927130964560055543

Graph of the $Z$-function along the critical line