Properties

Label 8-980e4-1.1-c1e4-0-8
Degree $8$
Conductor $922368160000$
Sign $1$
Analytic cond. $3749.83$
Root an. cond. $2.79738$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·3-s − 6·5-s + 15·9-s + 2·11-s + 36·15-s − 18·17-s + 19·25-s − 18·27-s + 28·29-s − 12·33-s − 90·45-s + 42·47-s + 108·51-s − 12·55-s − 40·71-s − 114·75-s + 6·79-s + 9·81-s + 108·85-s − 168·87-s + 30·99-s − 6·103-s − 6·109-s + 23·121-s − 42·125-s + 127-s + 131-s + ⋯
L(s)  = 1  − 3.46·3-s − 2.68·5-s + 5·9-s + 0.603·11-s + 9.29·15-s − 4.36·17-s + 19/5·25-s − 3.46·27-s + 5.19·29-s − 2.08·33-s − 13.4·45-s + 6.12·47-s + 15.1·51-s − 1.61·55-s − 4.74·71-s − 13.1·75-s + 0.675·79-s + 81-s + 11.7·85-s − 18.0·87-s + 3.01·99-s − 0.591·103-s − 0.574·109-s + 2.09·121-s − 3.75·125-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 5^{4} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(3749.83\)
Root analytic conductor: \(2.79738\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 5^{4} \cdot 7^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.1180535722\)
\(L(\frac12)\) \(\approx\) \(0.1180535722\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2^2$ \( 1 + 6 T + 17 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
7 \( 1 \)
good3$C_2$ \( ( 1 + p T^{2} )^{2}( 1 + p T + p T^{2} )^{2} \)
11$C_2^2$ \( ( 1 - T - 10 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 7 T + p T^{2} )^{2}( 1 + 7 T + p T^{2} )^{2} \)
17$C_2^2$ \( ( 1 + 9 T + 44 T^{2} + 9 p T^{3} + p^{2} T^{4} )^{2} \)
19$C_2^3$ \( 1 - 30 T^{2} + 539 T^{4} - 30 p^{2} T^{6} + p^{4} T^{8} \)
23$C_2^3$ \( 1 + 40 T^{2} + 1071 T^{4} + 40 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2$ \( ( 1 - 7 T + p T^{2} )^{4} \)
31$C_2^3$ \( 1 - 12 T^{2} - 817 T^{4} - 12 p^{2} T^{6} + p^{4} T^{8} \)
37$C_2^3$ \( 1 + 20 T^{2} - 969 T^{4} + 20 p^{2} T^{6} + p^{4} T^{8} \)
41$C_2^2$ \( ( 1 + 32 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 21 T + 194 T^{2} - 21 p T^{3} + p^{2} T^{4} )^{2} \)
53$C_2^3$ \( 1 - 44 T^{2} - 873 T^{4} - 44 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^3$ \( 1 - 68 T^{2} + 1143 T^{4} - 68 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2^3$ \( 1 + 78 T^{2} + 2363 T^{4} + 78 p^{2} T^{6} + p^{4} T^{8} \)
67$C_2^3$ \( 1 - 16 T^{2} - 4233 T^{4} - 16 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2$ \( ( 1 + 10 T + p T^{2} )^{4} \)
73$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 3 T - 70 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2$ \( ( 1 - p T^{2} )^{4} \)
89$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 19 T + p T^{2} )^{2}( 1 + 19 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.94766071715292051610444062677, −6.87607169478758594981400771039, −6.60684072079493615083742566438, −6.59630213191095520268022567076, −6.32928753986726113292741658156, −5.98351030213213962741704584580, −5.75809394673006333103781119239, −5.72429951133565025457385558397, −5.48684870504763657202160028234, −4.89118372745725648568726880885, −4.70293753865458460111147375758, −4.55811037330846508973892701312, −4.46731755205404478596602934595, −4.41642959136690270109458076433, −4.08435937086795423614483069811, −3.86316634223836448301622129572, −3.44318988615782679350205800760, −2.87985696503756992212430191115, −2.79197291810955489598853220523, −2.34005250572410414018158352680, −2.24641975638746342882848886896, −1.12611711738375771055412319527, −1.05195269477210924731832896615, −0.48529871988183481285331901636, −0.27099643900918629041307917982, 0.27099643900918629041307917982, 0.48529871988183481285331901636, 1.05195269477210924731832896615, 1.12611711738375771055412319527, 2.24641975638746342882848886896, 2.34005250572410414018158352680, 2.79197291810955489598853220523, 2.87985696503756992212430191115, 3.44318988615782679350205800760, 3.86316634223836448301622129572, 4.08435937086795423614483069811, 4.41642959136690270109458076433, 4.46731755205404478596602934595, 4.55811037330846508973892701312, 4.70293753865458460111147375758, 4.89118372745725648568726880885, 5.48684870504763657202160028234, 5.72429951133565025457385558397, 5.75809394673006333103781119239, 5.98351030213213962741704584580, 6.32928753986726113292741658156, 6.59630213191095520268022567076, 6.60684072079493615083742566438, 6.87607169478758594981400771039, 6.94766071715292051610444062677

Graph of the $Z$-function along the critical line