Properties

Label 8-96e8-1.1-c1e4-0-6
Degree $8$
Conductor $7.214\times 10^{15}$
Sign $1$
Analytic cond. $2.93277\times 10^{7}$
Root an. cond. $8.57846$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 20·25-s + 64·67-s − 44·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + ⋯
L(s)  = 1  − 4·25-s + 7.81·67-s − 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + 0.0660·229-s + 0.0655·233-s + 0.0646·239-s + 0.0644·241-s + 0.0631·251-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{40} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(2.93277\times 10^{7}\)
Root analytic conductor: \(8.57846\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{40} \cdot 3^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(4.348807697\)
\(L(\frac12)\) \(\approx\) \(4.348807697\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 + p T^{2} )^{4} \)
7$C_2^3$ \( 1 - 94 T^{4} + p^{4} T^{8} \)
11$C_2$ \( ( 1 + p T^{2} )^{4} \)
13$C_2^3$ \( 1 + 146 T^{4} + p^{4} T^{8} \)
17$C_2$ \( ( 1 + p T^{2} )^{4} \)
19$C_2^2$ \( ( 1 + 26 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{4} \)
29$C_2$ \( ( 1 + p T^{2} )^{4} \)
31$C_2^3$ \( 1 + 194 T^{4} + p^{4} T^{8} \)
37$C_2^3$ \( 1 - 2062 T^{4} + p^{4} T^{8} \)
41$C_2$ \( ( 1 + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{4} \)
53$C_2$ \( ( 1 + p T^{2} )^{4} \)
59$C_2$ \( ( 1 + p T^{2} )^{4} \)
61$C_2^3$ \( 1 - 1966 T^{4} + p^{4} T^{8} \)
67$C_2$ \( ( 1 - 16 T + p T^{2} )^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2^2$ \( ( 1 - 46 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^3$ \( 1 + 7682 T^{4} + p^{4} T^{8} \)
83$C_2$ \( ( 1 + p T^{2} )^{4} \)
89$C_2$ \( ( 1 + p T^{2} )^{4} \)
97$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.56268289066454963226288484590, −5.17070303823346492077175950706, −5.05121838277036801930042013401, −4.92487081931468815963232915729, −4.87411078232184658234922266199, −4.26476745704602860369204133845, −4.19353513240785140615006454540, −4.14053414889633171271156859426, −4.04111241080636171150165958289, −3.59818772678345500450528097405, −3.58518650484385927523282139172, −3.50399956144488211330101940030, −3.36689300676674853445385804829, −2.77819491098741114169580916619, −2.62313114637905072766341270248, −2.49961923760053331634484074454, −2.42505165566482354671829267791, −1.93481572947072796841943348901, −1.85888278633763836280341812485, −1.73589394875469425226431388105, −1.55519748223773179259816827057, −1.01251169998746553677197041727, −0.67716759983748236729007642184, −0.56507748145586868443495279768, −0.29900260853018154502507582581, 0.29900260853018154502507582581, 0.56507748145586868443495279768, 0.67716759983748236729007642184, 1.01251169998746553677197041727, 1.55519748223773179259816827057, 1.73589394875469425226431388105, 1.85888278633763836280341812485, 1.93481572947072796841943348901, 2.42505165566482354671829267791, 2.49961923760053331634484074454, 2.62313114637905072766341270248, 2.77819491098741114169580916619, 3.36689300676674853445385804829, 3.50399956144488211330101940030, 3.58518650484385927523282139172, 3.59818772678345500450528097405, 4.04111241080636171150165958289, 4.14053414889633171271156859426, 4.19353513240785140615006454540, 4.26476745704602860369204133845, 4.87411078232184658234922266199, 4.92487081931468815963232915729, 5.05121838277036801930042013401, 5.17070303823346492077175950706, 5.56268289066454963226288484590

Graph of the $Z$-function along the critical line