Properties

Label 8-930e4-1.1-c1e4-0-1
Degree $8$
Conductor $748052010000$
Sign $1$
Analytic cond. $3041.16$
Root an. cond. $2.72508$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 2·3-s + 10·4-s − 2·5-s + 8·6-s − 2·7-s − 20·8-s + 9-s + 8·10-s + 2·11-s − 20·12-s − 4·13-s + 8·14-s + 4·15-s + 35·16-s + 4·17-s − 4·18-s − 4·19-s − 20·20-s + 4·21-s − 8·22-s + 8·23-s + 40·24-s + 25-s + 16·26-s + 2·27-s − 20·28-s + ⋯
L(s)  = 1  − 2.82·2-s − 1.15·3-s + 5·4-s − 0.894·5-s + 3.26·6-s − 0.755·7-s − 7.07·8-s + 1/3·9-s + 2.52·10-s + 0.603·11-s − 5.77·12-s − 1.10·13-s + 2.13·14-s + 1.03·15-s + 35/4·16-s + 0.970·17-s − 0.942·18-s − 0.917·19-s − 4.47·20-s + 0.872·21-s − 1.70·22-s + 1.66·23-s + 8.16·24-s + 1/5·25-s + 3.13·26-s + 0.384·27-s − 3.77·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 31^{4}\)
Sign: $1$
Analytic conductor: \(3041.16\)
Root analytic conductor: \(2.72508\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 31^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.06348406633\)
\(L(\frac12)\) \(\approx\) \(0.06348406633\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{4} \)
3$C_2$ \( ( 1 + T + T^{2} )^{2} \)
5$C_2$ \( ( 1 + T + T^{2} )^{2} \)
31$C_2^2$ \( 1 + 6 T + 43 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
good7$C_2$ \( ( 1 - 4 T + p T^{2} )^{2}( 1 + 5 T + p T^{2} )^{2} \)
11$C_2^2$ \( ( 1 - T - 10 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )^{2}( 1 + 7 T + p T^{2} )^{2} \)
17$D_4\times C_2$ \( 1 - 4 T + 6 T^{2} + 96 T^{3} - 461 T^{4} + 96 p T^{5} + 6 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
19$D_4\times C_2$ \( 1 + 4 T + 2 T^{2} - 96 T^{3} - 469 T^{4} - 96 p T^{5} + 2 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
23$D_{4}$ \( ( 1 - 4 T + 22 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
29$D_{4}$ \( ( 1 + 2 T + 31 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 8 T + 2 T^{2} + 96 T^{3} + 107 T^{4} + 96 p T^{5} + 2 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
41$C_2^3$ \( 1 - 54 T^{2} + 1235 T^{4} - 54 p^{2} T^{6} + p^{4} T^{8} \)
43$C_2^2$ \( ( 1 - 4 T - 27 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
47$D_{4}$ \( ( 1 + 12 T + 102 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 3 T - 44 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 7 T - 10 T^{2} - 7 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 - 4 T + 98 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 8 T - 58 T^{2} + 96 T^{3} + 6107 T^{4} + 96 p T^{5} - 58 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 + 8 T + 18 T^{2} - 768 T^{3} - 7469 T^{4} - 768 p T^{5} + 18 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
73$D_4\times C_2$ \( 1 - 12 T + 74 T^{2} + 912 T^{3} - 10941 T^{4} + 912 p T^{5} + 74 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
79$C_2^2$ \( ( 1 - 8 T - 15 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 + 6 T - 111 T^{2} - 114 T^{3} + 11732 T^{4} - 114 p T^{5} - 111 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
89$C_2$ \( ( 1 + p T^{2} )^{4} \)
97$D_{4}$ \( ( 1 + 10 T + 191 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.40310846588771260934708763319, −7.04358485733164412061460734172, −6.84984285691560646460102285922, −6.72527547068686720989092953762, −6.38353107943677925950269163073, −6.32620493763640991813724636748, −6.08550798902876870187403629709, −5.69527921613358295539543162845, −5.49137040459936073345599428862, −5.32211297424046772191797192797, −4.98901597949311110759811213583, −4.75639522565398836729022964013, −4.43960625838953508121481906515, −3.96038026120998768426769521792, −3.71794807748740401632336724225, −3.47409892232129545401689466982, −3.32610337519141172966699550193, −2.76887853579925944867846487861, −2.58547262726325529931812474150, −2.28409383139327910595016288615, −1.94110801735605350955286700965, −1.46868765705065528659553402138, −0.878215642443231681910313791399, −0.852203425330420108772833614008, −0.16675286034182692367101090418, 0.16675286034182692367101090418, 0.852203425330420108772833614008, 0.878215642443231681910313791399, 1.46868765705065528659553402138, 1.94110801735605350955286700965, 2.28409383139327910595016288615, 2.58547262726325529931812474150, 2.76887853579925944867846487861, 3.32610337519141172966699550193, 3.47409892232129545401689466982, 3.71794807748740401632336724225, 3.96038026120998768426769521792, 4.43960625838953508121481906515, 4.75639522565398836729022964013, 4.98901597949311110759811213583, 5.32211297424046772191797192797, 5.49137040459936073345599428862, 5.69527921613358295539543162845, 6.08550798902876870187403629709, 6.32620493763640991813724636748, 6.38353107943677925950269163073, 6.72527547068686720989092953762, 6.84984285691560646460102285922, 7.04358485733164412061460734172, 7.40310846588771260934708763319

Graph of the $Z$-function along the critical line