Properties

Label 8-912e4-1.1-c1e4-0-0
Degree $8$
Conductor $691798081536$
Sign $1$
Analytic cond. $2812.46$
Root an. cond. $2.69858$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 8·7-s + 3·9-s − 12·13-s − 12·17-s + 2·19-s + 16·21-s − 8·25-s − 10·27-s + 24·39-s − 6·41-s − 8·43-s − 12·47-s + 24·49-s + 24·51-s − 12·53-s − 4·57-s − 18·59-s + 8·61-s − 24·63-s + 6·67-s − 12·71-s + 2·73-s + 16·75-s + 20·81-s + 24·89-s + 96·91-s + ⋯
L(s)  = 1  − 1.15·3-s − 3.02·7-s + 9-s − 3.32·13-s − 2.91·17-s + 0.458·19-s + 3.49·21-s − 8/5·25-s − 1.92·27-s + 3.84·39-s − 0.937·41-s − 1.21·43-s − 1.75·47-s + 24/7·49-s + 3.36·51-s − 1.64·53-s − 0.529·57-s − 2.34·59-s + 1.02·61-s − 3.02·63-s + 0.733·67-s − 1.42·71-s + 0.234·73-s + 1.84·75-s + 20/9·81-s + 2.54·89-s + 10.0·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(2812.46\)
Root analytic conductor: \(2.69858\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 19^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.01193698164\)
\(L(\frac12)\) \(\approx\) \(0.01193698164\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + 2 T + T^{2} + 2 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 2 T - 15 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
good5$C_2^3$ \( 1 + 8 T^{2} + 39 T^{4} + 8 p^{2} T^{6} + p^{4} T^{8} \)
7$D_{4}$ \( ( 1 + 4 T + 12 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
11$D_4\times C_2$ \( 1 - 34 T^{2} + 507 T^{4} - 34 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2^2$ \( ( 1 + 6 T + 25 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 + 12 T + 86 T^{2} + 456 T^{3} + 1971 T^{4} + 456 p T^{5} + 86 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
23$C_2^3$ \( 1 - 4 T^{2} - 513 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^3$ \( 1 - 52 T^{2} + 1863 T^{4} - 52 p^{2} T^{6} + p^{4} T^{8} \)
31$C_2^2$ \( ( 1 - 44 T^{2} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 88 T^{2} + 3810 T^{4} - 88 p^{2} T^{6} + p^{4} T^{8} \)
41$C_2^2$ \( ( 1 + 3 T - 32 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 + 8 T - 14 T^{2} - 64 T^{3} + 1483 T^{4} - 64 p T^{5} - 14 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 + 12 T + 56 T^{2} + 96 T^{3} + 111 T^{4} + 96 p T^{5} + 56 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 + 12 T + 26 T^{2} + 144 T^{3} + 3483 T^{4} + 144 p T^{5} + 26 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
59$D_4\times C_2$ \( 1 + 18 T + 131 T^{2} + 1350 T^{3} + 14652 T^{4} + 1350 p T^{5} + 131 p^{2} T^{6} + 18 p^{3} T^{7} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 - 8 T - 68 T^{2} - 80 T^{3} + 9799 T^{4} - 80 p T^{5} - 68 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 - 6 T + 131 T^{2} - 714 T^{3} + 10476 T^{4} - 714 p T^{5} + 131 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
71$C_2^2$ \( ( 1 + 6 T - 35 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 2 T - 47 T^{2} + 190 T^{3} - 3020 T^{4} + 190 p T^{5} - 47 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
79$C_2^3$ \( 1 + 86 T^{2} + 1155 T^{4} + 86 p^{2} T^{6} + p^{4} T^{8} \)
83$C_2^2$$\times$$C_2^2$ \( ( 1 - 18 T + 241 T^{2} - 18 p T^{3} + p^{2} T^{4} )( 1 + 18 T + 241 T^{2} + 18 p T^{3} + p^{2} T^{4} ) \)
89$D_4\times C_2$ \( 1 - 24 T + 278 T^{2} - 2880 T^{3} + 29619 T^{4} - 2880 p T^{5} + 278 p^{2} T^{6} - 24 p^{3} T^{7} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 + 18 T + 257 T^{2} + 2682 T^{3} + 23268 T^{4} + 2682 p T^{5} + 257 p^{2} T^{6} + 18 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.05780558869616356742417207119, −6.99511427734581641421438442056, −6.78435024665851196463523856237, −6.42589831402705867431444599857, −6.40990099497161945904219905037, −6.22879404047453459279853661990, −6.08373015508812769471420596752, −5.63597412495698544717602565187, −5.29630988239453124757859994076, −5.20968726745541476963587163567, −4.94889830160876964978098272821, −4.64705686724673619814543687516, −4.51686359058294171846129145716, −4.14948603731631495642795911622, −4.02016800263063226700447286197, −3.49723176188910547344448924852, −3.25036604926584370314173885763, −3.11348767342970864004135789721, −2.86463956887947738533774468744, −2.24369966125123557714220916792, −2.17816461713731591660597698999, −1.96322193879449765741878637298, −1.39882601037000971575206727618, −0.20206774888494465385955466473, −0.12092908824677507958414350416, 0.12092908824677507958414350416, 0.20206774888494465385955466473, 1.39882601037000971575206727618, 1.96322193879449765741878637298, 2.17816461713731591660597698999, 2.24369966125123557714220916792, 2.86463956887947738533774468744, 3.11348767342970864004135789721, 3.25036604926584370314173885763, 3.49723176188910547344448924852, 4.02016800263063226700447286197, 4.14948603731631495642795911622, 4.51686359058294171846129145716, 4.64705686724673619814543687516, 4.94889830160876964978098272821, 5.20968726745541476963587163567, 5.29630988239453124757859994076, 5.63597412495698544717602565187, 6.08373015508812769471420596752, 6.22879404047453459279853661990, 6.40990099497161945904219905037, 6.42589831402705867431444599857, 6.78435024665851196463523856237, 6.99511427734581641421438442056, 7.05780558869616356742417207119

Graph of the $Z$-function along the critical line