# Properties

 Label 8-882e4-1.1-c2e4-0-7 Degree $8$ Conductor $605165749776$ Sign $1$ Analytic cond. $333591.$ Root an. cond. $4.90232$ Motivic weight $2$ Arithmetic yes Rational yes Primitive no Self-dual yes Analytic rank $0$

# Origins of factors

## Dirichlet series

 L(s)  = 1 − 4·4-s + 12·16-s − 48·25-s − 24·37-s − 272·43-s − 32·64-s − 416·67-s − 80·79-s + 192·100-s + 468·121-s + 127-s + 131-s + 137-s + 139-s + 96·148-s + 149-s + 151-s + 157-s + 163-s + 167-s − 380·169-s + 1.08e3·172-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
 L(s)  = 1 − 4-s + 3/4·16-s − 1.91·25-s − 0.648·37-s − 6.32·43-s − 1/2·64-s − 6.20·67-s − 1.01·79-s + 1.91·100-s + 3.86·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.648·148-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 2.24·169-s + 6.32·172-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

## Invariants

 Degree: $$8$$ Conductor: $$2^{4} \cdot 3^{8} \cdot 7^{8}$$ Sign: $1$ Analytic conductor: $$333591.$$ Root analytic conductor: $$4.90232$$ Motivic weight: $$2$$ Rational: yes Arithmetic: yes Character: induced by $\chi_{882} (1, \cdot )$ Primitive: no Self-dual: yes Analytic rank: $$0$$ Selberg data: $$(8,\ 2^{4} \cdot 3^{8} \cdot 7^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )$$

## Particular Values

 $$L(\frac{3}{2})$$ $$\approx$$ $$0.5217759107$$ $$L(\frac12)$$ $$\approx$$ $$0.5217759107$$ $$L(2)$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ $$( 1 + p T^{2} )^{2}$$
3 $$1$$
7 $$1$$
good5$C_2^2$ $$( 1 + 24 T^{2} + p^{4} T^{4} )^{2}$$
11$C_2^2$ $$( 1 - 234 T^{2} + p^{4} T^{4} )^{2}$$
13$C_2^2$ $$( 1 + 190 T^{2} + p^{4} T^{4} )^{2}$$
17$C_2^2$ $$( 1 + 88 T^{2} + p^{4} T^{4} )^{2}$$
19$C_2^2$ $$( 1 + 130 T^{2} + p^{4} T^{4} )^{2}$$
23$C_2^2$ $$( 1 + 742 T^{2} + p^{4} T^{4} )^{2}$$
29$C_2^2$ $$( 1 - 1440 T^{2} + p^{4} T^{4} )^{2}$$
31$C_2^2$ $$( 1 + 1330 T^{2} + p^{4} T^{4} )^{2}$$
37$C_2$ $$( 1 + 6 T + p^{2} T^{2} )^{4}$$
41$C_2^2$ $$( 1 - 2696 T^{2} + p^{4} T^{4} )^{2}$$
43$C_2$ $$( 1 + 68 T + p^{2} T^{2} )^{4}$$
47$C_2^2$ $$( 1 + 318 T^{2} + p^{4} T^{4} )^{2}$$
53$C_2^2$ $$( 1 - 3936 T^{2} + p^{4} T^{4} )^{2}$$
59$C_2^2$ $$( 1 - 2226 T^{2} + p^{4} T^{4} )^{2}$$
61$C_2^2$ $$( 1 - 2030 T^{2} + p^{4} T^{4} )^{2}$$
67$C_2$ $$( 1 + 104 T + p^{2} T^{2} )^{4}$$
71$C_2^2$ $$( 1 - 5082 T^{2} + p^{4} T^{4} )^{2}$$
73$C_2^2$ $$( 1 + 6958 T^{2} + p^{4} T^{4} )^{2}$$
79$C_2$ $$( 1 + 20 T + p^{2} T^{2} )^{4}$$
83$C_1$$\times$$C_1$ $$( 1 - p T )^{4}( 1 + p T )^{4}$$
89$C_2^2$ $$( 1 - 6888 T^{2} + p^{4} T^{4} )^{2}$$
97$C_2^2$ $$( 1 - 6194 T^{2} + p^{4} T^{4} )^{2}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$