Properties

Label 8-864e4-1.1-c1e4-0-3
Degree $8$
Conductor $557256278016$
Sign $1$
Analytic cond. $2265.49$
Root an. cond. $2.62660$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 2·7-s − 2·11-s − 2·13-s + 16·19-s − 6·23-s + 11·25-s + 10·29-s − 10·31-s + 4·35-s + 16·37-s − 14·41-s − 10·43-s + 2·47-s + 9·49-s − 16·53-s + 4·55-s + 14·59-s + 6·61-s + 4·65-s − 10·67-s + 8·71-s + 4·77-s − 22·79-s − 6·83-s + 32·89-s + 4·91-s + ⋯
L(s)  = 1  − 0.894·5-s − 0.755·7-s − 0.603·11-s − 0.554·13-s + 3.67·19-s − 1.25·23-s + 11/5·25-s + 1.85·29-s − 1.79·31-s + 0.676·35-s + 2.63·37-s − 2.18·41-s − 1.52·43-s + 0.291·47-s + 9/7·49-s − 2.19·53-s + 0.539·55-s + 1.82·59-s + 0.768·61-s + 0.496·65-s − 1.22·67-s + 0.949·71-s + 0.455·77-s − 2.47·79-s − 0.658·83-s + 3.39·89-s + 0.419·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 3^{12}\)
Sign: $1$
Analytic conductor: \(2265.49\)
Root analytic conductor: \(2.62660\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{864} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 3^{12} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.114999018\)
\(L(\frac12)\) \(\approx\) \(1.114999018\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 + T - 4 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
7$D_4\times C_2$ \( 1 + 2 T - 5 T^{2} - 10 T^{3} + 4 T^{4} - 10 p T^{5} - 5 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
11$D_4\times C_2$ \( 1 + 2 T - 13 T^{2} - 10 T^{3} + 124 T^{4} - 10 p T^{5} - 13 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
13$D_4\times C_2$ \( 1 + 2 T + T^{2} - 46 T^{3} - 212 T^{4} - 46 p T^{5} + p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
17$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
23$D_4\times C_2$ \( 1 + 6 T - 13 T^{2} + 18 T^{3} + 1044 T^{4} + 18 p T^{5} - 13 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 - 10 T + 41 T^{2} - 10 T^{3} - 260 T^{4} - 10 p T^{5} + 41 p^{2} T^{6} - 10 p^{3} T^{7} + p^{4} T^{8} \)
31$D_4\times C_2$ \( 1 + 10 T + 19 T^{2} + 190 T^{3} + 2500 T^{4} + 190 p T^{5} + 19 p^{2} T^{6} + 10 p^{3} T^{7} + p^{4} T^{8} \)
37$D_{4}$ \( ( 1 - 8 T + 66 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 + 14 T + 89 T^{2} + 350 T^{3} + 1732 T^{4} + 350 p T^{5} + 89 p^{2} T^{6} + 14 p^{3} T^{7} + p^{4} T^{8} \)
43$C_2$$\times$$C_2^2$ \( ( 1 + 10 T + p T^{2} )^{2}( 1 - 10 T + 57 T^{2} - 10 p T^{3} + p^{2} T^{4} ) \)
47$D_4\times C_2$ \( 1 - 2 T - 37 T^{2} + 106 T^{3} - 716 T^{4} + 106 p T^{5} - 37 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
53$D_{4}$ \( ( 1 + 8 T + 98 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - 14 T + 83 T^{2} + 70 T^{3} - 2276 T^{4} + 70 p T^{5} + 83 p^{2} T^{6} - 14 p^{3} T^{7} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 - 6 T - 71 T^{2} + 90 T^{3} + 5532 T^{4} + 90 p T^{5} - 71 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 + 10 T - 5 T^{2} - 290 T^{3} - 164 T^{4} - 290 p T^{5} - 5 p^{2} T^{6} + 10 p^{3} T^{7} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 - 4 T + 50 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 + 122 T^{2} + p^{2} T^{4} )^{2} \)
79$D_4\times C_2$ \( 1 + 22 T + 211 T^{2} + 2530 T^{3} + 30052 T^{4} + 2530 p T^{5} + 211 p^{2} T^{6} + 22 p^{3} T^{7} + p^{4} T^{8} \)
83$D_4\times C_2$ \( 1 + 6 T - 133 T^{2} + 18 T^{3} + 18684 T^{4} + 18 p T^{5} - 133 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 - 16 T + 218 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 + 2 T - 167 T^{2} - 46 T^{3} + 19444 T^{4} - 46 p T^{5} - 167 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.34753050017062907001220216539, −7.00613372952920521259098575205, −6.82042267847475819365736316869, −6.76311793678875472035625793373, −6.48682576550809438461475936852, −6.26910103828568059464996969194, −5.70611857019374349861001660381, −5.58053964785478330885405675896, −5.51778099768145108919778639558, −5.22013230170831696402658597186, −4.97194291425726780116558570849, −4.63894662121938793634312902872, −4.58262628462686661984446099278, −4.10702458622560280148647835653, −3.95522948358889876889702046405, −3.46617477014396643123344031772, −3.22597956849282610321532193354, −3.18310854133402948892821618599, −2.97016851367770817159556250004, −2.49098791384464004328482122989, −2.34428219328039793434820109032, −1.69127943503867575189940154300, −1.14610365025289695387711388540, −1.04896443765932484233135236254, −0.30489569258622436693407985971, 0.30489569258622436693407985971, 1.04896443765932484233135236254, 1.14610365025289695387711388540, 1.69127943503867575189940154300, 2.34428219328039793434820109032, 2.49098791384464004328482122989, 2.97016851367770817159556250004, 3.18310854133402948892821618599, 3.22597956849282610321532193354, 3.46617477014396643123344031772, 3.95522948358889876889702046405, 4.10702458622560280148647835653, 4.58262628462686661984446099278, 4.63894662121938793634312902872, 4.97194291425726780116558570849, 5.22013230170831696402658597186, 5.51778099768145108919778639558, 5.58053964785478330885405675896, 5.70611857019374349861001660381, 6.26910103828568059464996969194, 6.48682576550809438461475936852, 6.76311793678875472035625793373, 6.82042267847475819365736316869, 7.00613372952920521259098575205, 7.34753050017062907001220216539

Graph of the $Z$-function along the critical line