L(s) = 1 | − 18·3-s − 47·5-s − 174·7-s + 81·9-s + 407·11-s + 898·13-s + 846·15-s + 1.86e3·17-s + 1.46e3·19-s + 3.13e3·21-s + 44·23-s + 5.03e3·25-s + 1.45e3·27-s + 1.53e3·29-s + 1.11e4·31-s − 7.32e3·33-s + 8.17e3·35-s + 3.11e3·37-s − 1.61e4·39-s − 1.56e4·41-s − 2.52e4·43-s − 3.80e3·45-s − 9.57e3·47-s + 1.74e4·49-s − 3.36e4·51-s − 1.33e4·53-s − 1.91e4·55-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 0.840·5-s − 1.34·7-s + 1/3·9-s + 1.01·11-s + 1.47·13-s + 0.970·15-s + 1.56·17-s + 0.929·19-s + 1.54·21-s + 0.0173·23-s + 1.61·25-s + 0.384·27-s + 0.338·29-s + 2.08·31-s − 1.17·33-s + 1.12·35-s + 0.373·37-s − 1.70·39-s − 1.45·41-s − 2.08·43-s − 0.280·45-s − 0.632·47-s + 1.03·49-s − 1.81·51-s − 0.655·53-s − 0.852·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 49787136 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49787136 ^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.160281858\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.160281858\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | $C_2$ | \( ( 1 + p^{2} T + p^{4} T^{2} )^{2} \) |
| 7 | $C_2^2$ | \( 1 + 174 T + 1837 p T^{2} + 174 p^{5} T^{3} + p^{10} T^{4} \) |
good | 5 | $D_4\times C_2$ | \( 1 + 47 T - 2823 T^{2} - 57246 T^{3} + 8652274 T^{4} - 57246 p^{5} T^{5} - 2823 p^{10} T^{6} + 47 p^{15} T^{7} + p^{20} T^{8} \) |
| 11 | $D_4\times C_2$ | \( 1 - 37 p T - 196095 T^{2} - 1466754 p T^{3} + 78243359836 T^{4} - 1466754 p^{6} T^{5} - 196095 p^{10} T^{6} - 37 p^{16} T^{7} + p^{20} T^{8} \) |
| 13 | $D_{4}$ | \( ( 1 - 449 T + 748730 T^{2} - 449 p^{5} T^{3} + p^{10} T^{4} )^{2} \) |
| 17 | $D_4\times C_2$ | \( 1 - 1868 T - 194322 T^{2} - 1576651776 T^{3} + 6599507599699 T^{4} - 1576651776 p^{5} T^{5} - 194322 p^{10} T^{6} - 1868 p^{15} T^{7} + p^{20} T^{8} \) |
| 19 | $D_4\times C_2$ | \( 1 - 77 p T + 1257499 T^{2} + 313338256 p T^{3} - 10651372361432 T^{4} + 313338256 p^{6} T^{5} + 1257499 p^{10} T^{6} - 77 p^{16} T^{7} + p^{20} T^{8} \) |
| 23 | $D_4\times C_2$ | \( 1 - 44 T + 4831266 T^{2} + 778888704 T^{3} - 18116543724797 T^{4} + 778888704 p^{5} T^{5} + 4831266 p^{10} T^{6} - 44 p^{15} T^{7} + p^{20} T^{8} \) |
| 29 | $D_{4}$ | \( ( 1 - 767 T + 20137030 T^{2} - 767 p^{5} T^{3} + p^{10} T^{4} )^{2} \) |
| 31 | $D_4\times C_2$ | \( 1 - 11170 T + 46543337 T^{2} - 234204305370 T^{3} + 1727582741482268 T^{4} - 234204305370 p^{5} T^{5} + 46543337 p^{10} T^{6} - 11170 p^{15} T^{7} + p^{20} T^{8} \) |
| 37 | $D_4\times C_2$ | \( 1 - 3113 T - 130639157 T^{2} - 5111583356 T^{3} + 14211907489914694 T^{4} - 5111583356 p^{5} T^{5} - 130639157 p^{10} T^{6} - 3113 p^{15} T^{7} + p^{20} T^{8} \) |
| 41 | $D_{4}$ | \( ( 1 + 7842 T + 247022914 T^{2} + 7842 p^{5} T^{3} + p^{10} T^{4} )^{2} \) |
| 43 | $D_{4}$ | \( ( 1 + 12629 T + 333109116 T^{2} + 12629 p^{5} T^{3} + p^{10} T^{4} )^{2} \) |
| 47 | $D_4\times C_2$ | \( 1 + 9576 T - 8247254 p T^{2} + 197559583200 T^{3} + 156118328865021315 T^{4} + 197559583200 p^{5} T^{5} - 8247254 p^{11} T^{6} + 9576 p^{15} T^{7} + p^{20} T^{8} \) |
| 53 | $D_4\times C_2$ | \( 1 + 13395 T - 607359157 T^{2} - 664469744580 T^{3} + 369108297267354750 T^{4} - 664469744580 p^{5} T^{5} - 607359157 p^{10} T^{6} + 13395 p^{15} T^{7} + p^{20} T^{8} \) |
| 59 | $D_4\times C_2$ | \( 1 - 47521 T + 1032621423 T^{2} + 9704956266180 T^{3} - 623437058679047936 T^{4} + 9704956266180 p^{5} T^{5} + 1032621423 p^{10} T^{6} - 47521 p^{15} T^{7} + p^{20} T^{8} \) |
| 61 | $D_4\times C_2$ | \( 1 - 63652 T + 1692210626 T^{2} - 42657907555152 T^{3} + 1431320230592549579 T^{4} - 42657907555152 p^{5} T^{5} + 1692210626 p^{10} T^{6} - 63652 p^{15} T^{7} + p^{20} T^{8} \) |
| 67 | $D_4\times C_2$ | \( 1 + 44541 T - 1137929947 T^{2} + 18777613219974 T^{3} + 5244474546154615068 T^{4} + 18777613219974 p^{5} T^{5} - 1137929947 p^{10} T^{6} + 44541 p^{15} T^{7} + p^{20} T^{8} \) |
| 71 | $D_{4}$ | \( ( 1 + 125840 T + 7124822602 T^{2} + 125840 p^{5} T^{3} + p^{10} T^{4} )^{2} \) |
| 73 | $D_4\times C_2$ | \( 1 + 6039 T - 3120368275 T^{2} - 5974415250210 T^{3} + 5592395112555163014 T^{4} - 5974415250210 p^{5} T^{5} - 3120368275 p^{10} T^{6} + 6039 p^{15} T^{7} + p^{20} T^{8} \) |
| 79 | $D_4\times C_2$ | \( 1 + 17588 T - 1195619881 T^{2} - 81769341182724 T^{3} - 8155228314208630432 T^{4} - 81769341182724 p^{5} T^{5} - 1195619881 p^{10} T^{6} + 17588 p^{15} T^{7} + p^{20} T^{8} \) |
| 83 | $D_{4}$ | \( ( 1 - 39325 T + 1663856032 T^{2} - 39325 p^{5} T^{3} + p^{10} T^{4} )^{2} \) |
| 89 | $D_4\times C_2$ | \( 1 + 83082 T - 5990581294 T^{2} + 143323189611840 T^{3} + 96508253465592493647 T^{4} + 143323189611840 p^{5} T^{5} - 5990581294 p^{10} T^{6} + 83082 p^{15} T^{7} + p^{20} T^{8} \) |
| 97 | $D_{4}$ | \( ( 1 - 1905 p T + 241552312 p T^{2} - 1905 p^{6} T^{3} + p^{10} T^{4} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.814424209138384949204326472181, −9.229906250379144721349727138087, −8.830356180626795159502430988931, −8.657408210756200445601072456362, −8.509879180809295599831043552427, −7.930966958132089606405990448490, −7.82317852839614520897010367604, −7.21260997944316618923009705267, −6.92978397891735721025252232725, −6.62331135394178576187184158284, −6.53547292710622975556494647681, −5.92918858536184659044975163765, −5.91514265393052544770492906593, −5.48120750112419088273079071298, −4.94664991579940228256524848705, −4.64343726847038328327050505178, −4.29402426594618259775622973822, −3.58947779920033430569995968377, −3.46041546340850499760503935043, −3.09244846324587534226707969096, −2.82299099144683285795690919074, −1.66232514891216347565067728470, −1.05633571407992533871828736756, −0.990555564616122450622168838021, −0.28835352411922524929152281949,
0.28835352411922524929152281949, 0.990555564616122450622168838021, 1.05633571407992533871828736756, 1.66232514891216347565067728470, 2.82299099144683285795690919074, 3.09244846324587534226707969096, 3.46041546340850499760503935043, 3.58947779920033430569995968377, 4.29402426594618259775622973822, 4.64343726847038328327050505178, 4.94664991579940228256524848705, 5.48120750112419088273079071298, 5.91514265393052544770492906593, 5.92918858536184659044975163765, 6.53547292710622975556494647681, 6.62331135394178576187184158284, 6.92978397891735721025252232725, 7.21260997944316618923009705267, 7.82317852839614520897010367604, 7.930966958132089606405990448490, 8.509879180809295599831043552427, 8.657408210756200445601072456362, 8.830356180626795159502430988931, 9.229906250379144721349727138087, 9.814424209138384949204326472181