Properties

Label 8-78e4-1.1-c5e4-0-0
Degree $8$
Conductor $37015056$
Sign $1$
Analytic cond. $24491.7$
Root an. cond. $3.53693$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 18·3-s + 16·4-s − 6·5-s + 144·6-s − 113·7-s − 128·8-s + 81·9-s − 48·10-s + 230·11-s + 288·12-s − 1.71e3·13-s − 904·14-s − 108·15-s − 1.02e3·16-s − 467·17-s + 648·18-s − 1.01e3·19-s − 96·20-s − 2.03e3·21-s + 1.84e3·22-s − 322·23-s − 2.30e3·24-s − 8.56e3·25-s − 1.37e4·26-s − 1.45e3·27-s − 1.80e3·28-s + ⋯
L(s)  = 1  + 1.41·2-s + 1.15·3-s + 1/2·4-s − 0.107·5-s + 1.63·6-s − 0.871·7-s − 0.707·8-s + 1/3·9-s − 0.151·10-s + 0.573·11-s + 0.577·12-s − 2.81·13-s − 1.23·14-s − 0.123·15-s − 16-s − 0.391·17-s + 0.471·18-s − 0.643·19-s − 0.0536·20-s − 1.00·21-s + 0.810·22-s − 0.126·23-s − 0.816·24-s − 2.74·25-s − 3.98·26-s − 0.384·27-s − 0.435·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 37015056 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37015056 ^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(37015056\)    =    \(2^{4} \cdot 3^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(24491.7\)
Root analytic conductor: \(3.53693\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 37015056,\ (\ :5/2, 5/2, 5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.286709581\)
\(L(\frac12)\) \(\approx\) \(1.286709581\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 - p^{2} T + p^{4} T^{2} )^{2} \)
3$C_2$ \( ( 1 - p^{2} T + p^{4} T^{2} )^{2} \)
13$C_2^2$ \( 1 + 132 p T + 649 p^{3} T^{2} + 132 p^{6} T^{3} + p^{10} T^{4} \)
good5$D_{4}$ \( ( 1 + 3 T + 4296 T^{2} + 3 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
7$D_4\times C_2$ \( 1 + 113 T - 23333 T^{2} + 281144 T^{3} + 806270572 T^{4} + 281144 p^{5} T^{5} - 23333 p^{10} T^{6} + 113 p^{15} T^{7} + p^{20} T^{8} \)
11$D_4\times C_2$ \( 1 - 230 T + 58430 T^{2} + 75355360 T^{3} - 34426441601 T^{4} + 75355360 p^{5} T^{5} + 58430 p^{10} T^{6} - 230 p^{15} T^{7} + p^{20} T^{8} \)
17$D_4\times C_2$ \( 1 + 467 T - 152997 p T^{2} - 9655692 T^{3} + 5621326151722 T^{4} - 9655692 p^{5} T^{5} - 152997 p^{11} T^{6} + 467 p^{15} T^{7} + p^{20} T^{8} \)
19$D_4\times C_2$ \( 1 + 1012 T - 3521782 T^{2} - 411147264 T^{3} + 11998495005419 T^{4} - 411147264 p^{5} T^{5} - 3521782 p^{10} T^{6} + 1012 p^{15} T^{7} + p^{20} T^{8} \)
23$D_4\times C_2$ \( 1 + 14 p T - 1038 p^{3} T^{2} - 3696 p^{3} T^{3} + 428944279 p^{4} T^{4} - 3696 p^{8} T^{5} - 1038 p^{13} T^{6} + 14 p^{16} T^{7} + p^{20} T^{8} \)
29$D_4\times C_2$ \( 1 + 529 T - 37897683 T^{2} - 1504885446 T^{3} + 1031076245023066 T^{4} - 1504885446 p^{5} T^{5} - 37897683 p^{10} T^{6} + 529 p^{15} T^{7} + p^{20} T^{8} \)
31$D_{4}$ \( ( 1 + 1401 T + 26790094 T^{2} + 1401 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 9275 T + 829313 T^{2} + 496134608550 T^{3} - 3515530034914630 T^{4} + 496134608550 p^{5} T^{5} + 829313 p^{10} T^{6} - 9275 p^{15} T^{7} + p^{20} T^{8} \)
41$D_4\times C_2$ \( 1 - 2497 T - 148315941 T^{2} + 192672145644 T^{3} + 9740972379809290 T^{4} + 192672145644 p^{5} T^{5} - 148315941 p^{10} T^{6} - 2497 p^{15} T^{7} + p^{20} T^{8} \)
43$D_4\times C_2$ \( 1 + 10085 T - 42377513 T^{2} - 1512065712580 T^{3} - 15802891377856280 T^{4} - 1512065712580 p^{5} T^{5} - 42377513 p^{10} T^{6} + 10085 p^{15} T^{7} + p^{20} T^{8} \)
47$D_{4}$ \( ( 1 - 17854 T + 487041518 T^{2} - 17854 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
53$D_{4}$ \( ( 1 - 31163 T + 1050342994 T^{2} - 31163 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - 22318 T - 441922042 T^{2} + 10932102535376 T^{3} + 16412881496946079 T^{4} + 10932102535376 p^{5} T^{5} - 441922042 p^{10} T^{6} - 22318 p^{15} T^{7} + p^{20} T^{8} \)
61$D_4\times C_2$ \( 1 - 3958 T + 1428299221 T^{2} + 12277027541522 T^{3} + 1268959125846149284 T^{4} + 12277027541522 p^{5} T^{5} + 1428299221 p^{10} T^{6} - 3958 p^{15} T^{7} + p^{20} T^{8} \)
67$D_4\times C_2$ \( 1 - 74163 T + 1431308087 T^{2} - 101498908371684 T^{3} + 7306749963288922992 T^{4} - 101498908371684 p^{5} T^{5} + 1431308087 p^{10} T^{6} - 74163 p^{15} T^{7} + p^{20} T^{8} \)
71$D_4\times C_2$ \( 1 - 6678 T - 3106848762 T^{2} + 3051941201568 T^{3} + 6595897703213644631 T^{4} + 3051941201568 p^{5} T^{5} - 3106848762 p^{10} T^{6} - 6678 p^{15} T^{7} + p^{20} T^{8} \)
73$D_{4}$ \( ( 1 - 54364 T + 4545812157 T^{2} - 54364 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 - 76549 T + 7489439274 T^{2} - 76549 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
83$D_{4}$ \( ( 1 + 89736 T + 7163641558 T^{2} + 89736 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 + 131858 T + 5147395650 T^{2} + 141222240810528 T^{3} + 21527313462635270959 T^{4} + 141222240810528 p^{5} T^{5} + 5147395650 p^{10} T^{6} + 131858 p^{15} T^{7} + p^{20} T^{8} \)
97$D_4\times C_2$ \( 1 + 75999 T - 11214981595 T^{2} - 13972485917082 T^{3} + \)\(16\!\cdots\!10\)\( T^{4} - 13972485917082 p^{5} T^{5} - 11214981595 p^{10} T^{6} + 75999 p^{15} T^{7} + p^{20} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.574831119325681874582150222427, −9.476368143308492442757380391958, −9.437665968991268481622813887465, −8.771053252609996477786107229477, −8.302300682362969562483791471860, −8.151319733501983859482093847465, −8.019162814637943752097217842939, −7.29396193281494289120414669805, −7.06242980449207414667041110127, −6.93861935800237922478478209077, −6.66029476758227445125235980628, −5.85561451867704577015945852755, −5.65482191439495423409862361236, −5.47906324424408396220730919183, −5.17002541243785885318386819857, −4.34034989206176336526968594329, −4.11962203156959794289704537369, −4.01137227244245338095304501862, −3.71769831046137267789483961382, −3.00201717467265560723569098621, −2.46777179541992650091495068542, −2.29926875240448332842426399967, −2.18322951891941111419585474006, −0.866172411726266478703964297759, −0.17364090577467031369689320663, 0.17364090577467031369689320663, 0.866172411726266478703964297759, 2.18322951891941111419585474006, 2.29926875240448332842426399967, 2.46777179541992650091495068542, 3.00201717467265560723569098621, 3.71769831046137267789483961382, 4.01137227244245338095304501862, 4.11962203156959794289704537369, 4.34034989206176336526968594329, 5.17002541243785885318386819857, 5.47906324424408396220730919183, 5.65482191439495423409862361236, 5.85561451867704577015945852755, 6.66029476758227445125235980628, 6.93861935800237922478478209077, 7.06242980449207414667041110127, 7.29396193281494289120414669805, 8.019162814637943752097217842939, 8.151319733501983859482093847465, 8.302300682362969562483791471860, 8.771053252609996477786107229477, 9.437665968991268481622813887465, 9.476368143308492442757380391958, 9.574831119325681874582150222427

Graph of the $Z$-function along the critical line