Properties

Label 8-78e4-1.1-c15e4-0-3
Degree $8$
Conductor $37015056$
Sign $1$
Analytic cond. $1.53460\times 10^{8}$
Root an. cond. $10.5499$
Motivic weight $15$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 512·2-s + 8.74e3·3-s + 1.63e5·4-s + 3.00e5·5-s + 4.47e6·6-s + 2.89e6·7-s + 4.19e7·8-s + 4.78e7·9-s + 1.53e8·10-s + 1.23e8·11-s + 1.43e9·12-s − 2.50e8·13-s + 1.48e9·14-s + 2.62e9·15-s + 9.39e9·16-s + 4.54e9·17-s + 2.44e10·18-s + 3.53e9·19-s + 4.91e10·20-s + 2.53e10·21-s + 6.32e10·22-s + 4.77e8·23-s + 3.66e11·24-s + 6.69e9·25-s − 1.28e11·26-s + 2.09e11·27-s + 4.74e11·28-s + ⋯
L(s)  = 1  + 2.82·2-s + 2.30·3-s + 5·4-s + 1.71·5-s + 6.53·6-s + 1.32·7-s + 7.07·8-s + 10/3·9-s + 4.86·10-s + 1.91·11-s + 11.5·12-s − 1.10·13-s + 3.75·14-s + 3.96·15-s + 35/4·16-s + 2.68·17-s + 9.42·18-s + 0.906·19-s + 8.59·20-s + 3.06·21-s + 5.40·22-s + 0.0292·23-s + 16.3·24-s + 0.219·25-s − 3.13·26-s + 3.84·27-s + 6.64·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 37015056 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(16-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37015056 ^{s/2} \, \Gamma_{\C}(s+15/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(37015056\)    =    \(2^{4} \cdot 3^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(1.53460\times 10^{8}\)
Root analytic conductor: \(10.5499\)
Motivic weight: \(15\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 37015056,\ (\ :15/2, 15/2, 15/2, 15/2),\ 1)\)

Particular Values

\(L(8)\) \(\approx\) \(952.3424560\)
\(L(\frac12)\) \(\approx\) \(952.3424560\)
\(L(\frac{17}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - p^{7} T )^{4} \)
3$C_1$ \( ( 1 - p^{7} T )^{4} \)
13$C_1$ \( ( 1 + p^{7} T )^{4} \)
good5$C_2 \wr S_4$ \( 1 - 60044 p T + 3337662716 p^{2} T^{2} - 131109067049876 p^{3} T^{3} + 5371991685731690086 p^{4} T^{4} - 131109067049876 p^{18} T^{5} + 3337662716 p^{32} T^{6} - 60044 p^{46} T^{7} + p^{60} T^{8} \)
7$C_2 \wr S_4$ \( 1 - 2894308 T + 1433276120092 p T^{2} - 147747052927927444 p^{2} T^{3} + \)\(74\!\cdots\!90\)\( p^{3} T^{4} - 147747052927927444 p^{17} T^{5} + 1433276120092 p^{31} T^{6} - 2894308 p^{45} T^{7} + p^{60} T^{8} \)
11$C_2 \wr S_4$ \( 1 - 123480656 T + 1267959675433852 p T^{2} - \)\(91\!\cdots\!20\)\( p^{2} T^{3} + \)\(55\!\cdots\!26\)\( p^{3} T^{4} - \)\(91\!\cdots\!20\)\( p^{17} T^{5} + 1267959675433852 p^{31} T^{6} - 123480656 p^{45} T^{7} + p^{60} T^{8} \)
17$C_2 \wr S_4$ \( 1 - 4547579520 T + 15795958402819961420 T^{2} - \)\(36\!\cdots\!60\)\( T^{3} + \)\(71\!\cdots\!98\)\( T^{4} - \)\(36\!\cdots\!60\)\( p^{15} T^{5} + 15795958402819961420 p^{30} T^{6} - 4547579520 p^{45} T^{7} + p^{60} T^{8} \)
19$C_2 \wr S_4$ \( 1 - 3530203884 T + 38743662870709295764 T^{2} - \)\(12\!\cdots\!16\)\( T^{3} + \)\(70\!\cdots\!74\)\( T^{4} - \)\(12\!\cdots\!16\)\( p^{15} T^{5} + 38743662870709295764 p^{30} T^{6} - 3530203884 p^{45} T^{7} + p^{60} T^{8} \)
23$C_2 \wr S_4$ \( 1 - 477775360 T + \)\(53\!\cdots\!28\)\( T^{2} - \)\(68\!\cdots\!20\)\( p T^{3} + \)\(18\!\cdots\!94\)\( T^{4} - \)\(68\!\cdots\!20\)\( p^{16} T^{5} + \)\(53\!\cdots\!28\)\( p^{30} T^{6} - 477775360 p^{45} T^{7} + p^{60} T^{8} \)
29$C_2 \wr S_4$ \( 1 + 32296563560 T + \)\(11\!\cdots\!24\)\( T^{2} + \)\(49\!\cdots\!60\)\( T^{3} + \)\(17\!\cdots\!46\)\( T^{4} + \)\(49\!\cdots\!60\)\( p^{15} T^{5} + \)\(11\!\cdots\!24\)\( p^{30} T^{6} + 32296563560 p^{45} T^{7} + p^{60} T^{8} \)
31$C_2 \wr S_4$ \( 1 - 302848932388 T + \)\(10\!\cdots\!96\)\( T^{2} - \)\(18\!\cdots\!28\)\( T^{3} + \)\(36\!\cdots\!74\)\( T^{4} - \)\(18\!\cdots\!28\)\( p^{15} T^{5} + \)\(10\!\cdots\!96\)\( p^{30} T^{6} - 302848932388 p^{45} T^{7} + p^{60} T^{8} \)
37$C_2 \wr S_4$ \( 1 - 486884740368 T + \)\(86\!\cdots\!04\)\( T^{2} - \)\(36\!\cdots\!56\)\( T^{3} + \)\(38\!\cdots\!90\)\( T^{4} - \)\(36\!\cdots\!56\)\( p^{15} T^{5} + \)\(86\!\cdots\!04\)\( p^{30} T^{6} - 486884740368 p^{45} T^{7} + p^{60} T^{8} \)
41$C_2 \wr S_4$ \( 1 + 48964324452 T + \)\(58\!\cdots\!00\)\( T^{2} + \)\(20\!\cdots\!76\)\( T^{3} + \)\(13\!\cdots\!98\)\( T^{4} + \)\(20\!\cdots\!76\)\( p^{15} T^{5} + \)\(58\!\cdots\!00\)\( p^{30} T^{6} + 48964324452 p^{45} T^{7} + p^{60} T^{8} \)
43$C_2 \wr S_4$ \( 1 - 781336193080 T + \)\(37\!\cdots\!20\)\( T^{2} - \)\(48\!\cdots\!60\)\( T^{3} + \)\(14\!\cdots\!98\)\( T^{4} - \)\(48\!\cdots\!60\)\( p^{15} T^{5} + \)\(37\!\cdots\!20\)\( p^{30} T^{6} - 781336193080 p^{45} T^{7} + p^{60} T^{8} \)
47$C_2 \wr S_4$ \( 1 - 1925546085944 T + \)\(21\!\cdots\!48\)\( T^{2} - \)\(40\!\cdots\!00\)\( T^{3} + \)\(36\!\cdots\!46\)\( T^{4} - \)\(40\!\cdots\!00\)\( p^{15} T^{5} + \)\(21\!\cdots\!48\)\( p^{30} T^{6} - 1925546085944 p^{45} T^{7} + p^{60} T^{8} \)
53$C_2 \wr S_4$ \( 1 - 3784002694008 T + \)\(18\!\cdots\!04\)\( T^{2} - \)\(54\!\cdots\!08\)\( T^{3} + \)\(17\!\cdots\!58\)\( T^{4} - \)\(54\!\cdots\!08\)\( p^{15} T^{5} + \)\(18\!\cdots\!04\)\( p^{30} T^{6} - 3784002694008 p^{45} T^{7} + p^{60} T^{8} \)
59$C_2 \wr S_4$ \( 1 + 3338828832488 T + \)\(11\!\cdots\!92\)\( T^{2} + \)\(28\!\cdots\!76\)\( T^{3} + \)\(59\!\cdots\!14\)\( T^{4} + \)\(28\!\cdots\!76\)\( p^{15} T^{5} + \)\(11\!\cdots\!92\)\( p^{30} T^{6} + 3338828832488 p^{45} T^{7} + p^{60} T^{8} \)
61$C_2 \wr S_4$ \( 1 + 2964321922952 T + \)\(48\!\cdots\!36\)\( T^{2} + \)\(14\!\cdots\!12\)\( T^{3} - \)\(15\!\cdots\!46\)\( T^{4} + \)\(14\!\cdots\!12\)\( p^{15} T^{5} + \)\(48\!\cdots\!36\)\( p^{30} T^{6} + 2964321922952 p^{45} T^{7} + p^{60} T^{8} \)
67$C_2 \wr S_4$ \( 1 - 28476463721140 T + \)\(79\!\cdots\!44\)\( T^{2} - \)\(19\!\cdots\!00\)\( T^{3} + \)\(27\!\cdots\!82\)\( T^{4} - \)\(19\!\cdots\!00\)\( p^{15} T^{5} + \)\(79\!\cdots\!44\)\( p^{30} T^{6} - 28476463721140 p^{45} T^{7} + p^{60} T^{8} \)
71$C_2 \wr S_4$ \( 1 - 40721833289696 T + \)\(19\!\cdots\!52\)\( T^{2} - \)\(55\!\cdots\!00\)\( T^{3} + \)\(16\!\cdots\!86\)\( T^{4} - \)\(55\!\cdots\!00\)\( p^{15} T^{5} + \)\(19\!\cdots\!52\)\( p^{30} T^{6} - 40721833289696 p^{45} T^{7} + p^{60} T^{8} \)
73$C_2 \wr S_4$ \( 1 - 90777676225904 T + \)\(25\!\cdots\!84\)\( T^{2} - \)\(18\!\cdots\!88\)\( T^{3} + \)\(31\!\cdots\!54\)\( T^{4} - \)\(18\!\cdots\!88\)\( p^{15} T^{5} + \)\(25\!\cdots\!84\)\( p^{30} T^{6} - 90777676225904 p^{45} T^{7} + p^{60} T^{8} \)
79$C_2 \wr S_4$ \( 1 - 43793210668880 T + \)\(74\!\cdots\!88\)\( T^{2} - \)\(12\!\cdots\!40\)\( T^{3} + \)\(28\!\cdots\!38\)\( T^{4} - \)\(12\!\cdots\!40\)\( p^{15} T^{5} + \)\(74\!\cdots\!88\)\( p^{30} T^{6} - 43793210668880 p^{45} T^{7} + p^{60} T^{8} \)
83$C_2 \wr S_4$ \( 1 + 34142102730120 T + \)\(66\!\cdots\!56\)\( T^{2} - \)\(19\!\cdots\!00\)\( T^{3} + \)\(18\!\cdots\!82\)\( T^{4} - \)\(19\!\cdots\!00\)\( p^{15} T^{5} + \)\(66\!\cdots\!56\)\( p^{30} T^{6} + 34142102730120 p^{45} T^{7} + p^{60} T^{8} \)
89$C_2 \wr S_4$ \( 1 - 192561551798100 T + \)\(58\!\cdots\!24\)\( T^{2} - \)\(74\!\cdots\!00\)\( T^{3} + \)\(14\!\cdots\!46\)\( T^{4} - \)\(74\!\cdots\!00\)\( p^{15} T^{5} + \)\(58\!\cdots\!24\)\( p^{30} T^{6} - 192561551798100 p^{45} T^{7} + p^{60} T^{8} \)
97$C_2 \wr S_4$ \( 1 - 577119276333152 T + \)\(23\!\cdots\!88\)\( T^{2} - \)\(10\!\cdots\!48\)\( T^{3} + \)\(21\!\cdots\!70\)\( T^{4} - \)\(10\!\cdots\!48\)\( p^{15} T^{5} + \)\(23\!\cdots\!88\)\( p^{30} T^{6} - 577119276333152 p^{45} T^{7} + p^{60} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.83821600155544995602493134055, −7.31676589743585453206415107014, −6.89620910602359307226958473275, −6.76655063789355511218723854544, −6.65091611667621773573853184828, −5.91342756928131190382325822551, −5.77873602570806598067135119397, −5.51923239366434395606591154225, −5.48293825271472002419364863204, −4.76259966712809704402551564132, −4.58980740756555317198257758051, −4.36482402463906523729659523721, −4.26936506399919149038119472562, −3.55565369003621944895955022835, −3.34696110330990108961612593226, −3.30066358835194944584443706158, −3.08758459761607773546666182070, −2.40999954559774128332511152000, −2.27157808430043246815240159717, −2.16387668452842279012846382040, −1.74700047165720176350616294911, −1.57141321258978140650518849150, −1.12070734963143983593703013817, −0.948908423856332618561727565687, −0.803888100446549459071084014042, 0.803888100446549459071084014042, 0.948908423856332618561727565687, 1.12070734963143983593703013817, 1.57141321258978140650518849150, 1.74700047165720176350616294911, 2.16387668452842279012846382040, 2.27157808430043246815240159717, 2.40999954559774128332511152000, 3.08758459761607773546666182070, 3.30066358835194944584443706158, 3.34696110330990108961612593226, 3.55565369003621944895955022835, 4.26936506399919149038119472562, 4.36482402463906523729659523721, 4.58980740756555317198257758051, 4.76259966712809704402551564132, 5.48293825271472002419364863204, 5.51923239366434395606591154225, 5.77873602570806598067135119397, 5.91342756928131190382325822551, 6.65091611667621773573853184828, 6.76655063789355511218723854544, 6.89620910602359307226958473275, 7.31676589743585453206415107014, 7.83821600155544995602493134055

Graph of the $Z$-function along the critical line