Properties

Label 8-768e4-1.1-c2e4-0-11
Degree $8$
Conductor $347892350976$
Sign $1$
Analytic cond. $191771.$
Root an. cond. $4.57454$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·9-s + 56·17-s − 4·25-s + 56·41-s − 92·49-s + 200·73-s + 27·81-s − 248·89-s − 584·97-s + 520·113-s + 388·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 336·153-s + 157-s + 163-s + 167-s − 292·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  − 2/3·9-s + 3.29·17-s − 0.159·25-s + 1.36·41-s − 1.87·49-s + 2.73·73-s + 1/3·81-s − 2.78·89-s − 6.02·97-s + 4.60·113-s + 3.20·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s − 2.19·153-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 1.72·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(191771.\)
Root analytic conductor: \(4.57454\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 3^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(3.422324410\)
\(L(\frac12)\) \(\approx\) \(3.422324410\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 + p T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 + 2 T^{2} + p^{4} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + 46 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 194 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 146 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2$ \( ( 1 - 14 T + p^{2} T^{2} )^{4} \)
19$C_2^2$ \( ( 1 + 478 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 482 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 482 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 1778 T^{2} + p^{4} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 1970 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 14 T + p^{2} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 3650 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 766 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 1730 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 4610 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 4370 T^{2} + p^{4} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 866 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 9506 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 50 T + p^{2} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 12338 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 13346 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2$ \( ( 1 + 62 T + p^{2} T^{2} )^{4} \)
97$C_2$ \( ( 1 + 146 T + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.24322191446746078333138259386, −7.23253419312110200561860400416, −6.63728602334032177810030237178, −6.48816480053014858610863140966, −6.37186570097152419273737187589, −5.83484671016590661978701547382, −5.69106777963148823299799601167, −5.59951040785179314968986217989, −5.45704107329987804436120806353, −5.28978005120934197552998741196, −4.61393816035973702860807141686, −4.60077143357596360096136212388, −4.46851950312496309022388011931, −3.88005144755581247212850530051, −3.76953961486365311975113178046, −3.25629167577844392518805992396, −3.24250310819799358439606180288, −3.05992712150639401627166108926, −2.66744169760783635816810187278, −2.27985798001979513732326838678, −1.81573815139331683759911593055, −1.61103083601623000909648284811, −0.994552364913843698085193449956, −0.895480285921050070660857141462, −0.32552671190579768496085932262, 0.32552671190579768496085932262, 0.895480285921050070660857141462, 0.994552364913843698085193449956, 1.61103083601623000909648284811, 1.81573815139331683759911593055, 2.27985798001979513732326838678, 2.66744169760783635816810187278, 3.05992712150639401627166108926, 3.24250310819799358439606180288, 3.25629167577844392518805992396, 3.76953961486365311975113178046, 3.88005144755581247212850530051, 4.46851950312496309022388011931, 4.60077143357596360096136212388, 4.61393816035973702860807141686, 5.28978005120934197552998741196, 5.45704107329987804436120806353, 5.59951040785179314968986217989, 5.69106777963148823299799601167, 5.83484671016590661978701547382, 6.37186570097152419273737187589, 6.48816480053014858610863140966, 6.63728602334032177810030237178, 7.23253419312110200561860400416, 7.24322191446746078333138259386

Graph of the $Z$-function along the critical line