Properties

Label 8-768e4-1.1-c2e4-0-0
Degree $8$
Conductor $347892350976$
Sign $1$
Analytic cond. $191771.$
Root an. cond. $4.57454$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 14·9-s + 100·25-s − 196·49-s − 568·73-s + 115·81-s − 376·97-s + 92·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 676·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 1.40e3·225-s + ⋯
L(s)  = 1  + 14/9·9-s + 4·25-s − 4·49-s − 7.78·73-s + 1.41·81-s − 3.87·97-s + 0.760·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 4·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + 0.00448·223-s + 56/9·225-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(191771.\)
Root analytic conductor: \(4.57454\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 3^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.09556955500\)
\(L(\frac12)\) \(\approx\) \(0.09556955500\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - 14 T^{2} + p^{4} T^{4} \)
good5$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
7$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
11$C_2^2$ \( ( 1 - 46 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
17$C_2$ \( ( 1 - 2 T + p^{2} T^{2} )^{2}( 1 + 2 T + p^{2} T^{2} )^{2} \)
19$C_2^2$ \( ( 1 + 434 T^{2} + p^{4} T^{4} )^{2} \)
23$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
29$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
31$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
37$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
41$C_2$ \( ( 1 - 46 T + p^{2} T^{2} )^{2}( 1 + 46 T + p^{2} T^{2} )^{2} \)
43$C_2^2$ \( ( 1 - 3502 T^{2} + p^{4} T^{4} )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
53$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
59$C_2^2$ \( ( 1 - 238 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 5134 T^{2} + p^{4} T^{4} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
73$C_2$ \( ( 1 + 142 T + p^{2} T^{2} )^{4} \)
79$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 11186 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2$ \( ( 1 - 146 T + p^{2} T^{2} )^{2}( 1 + 146 T + p^{2} T^{2} )^{2} \)
97$C_2$ \( ( 1 + 94 T + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.00879917454896232851109247840, −6.94029189952588883552514372375, −6.80992643578864394722428814452, −6.76040856783115788878324961051, −6.23181953872864823937099783579, −6.15659636866224041290773310214, −5.83815802319003284027986191977, −5.45073797576647302856782005838, −5.38126678357049588843816289882, −4.93195712800416955711357331986, −4.58995259995305007823911337123, −4.58491949272348302023670203975, −4.49799617493307901531764614797, −4.24717716778894650797233325681, −3.64266858952533784618349501352, −3.35805764807088626954579788717, −3.28786986920726198447903194643, −2.80728873216392143731892900783, −2.70411194709296404025987565066, −2.39917421385043750282690161181, −1.54805795712717115100405820466, −1.48952268650664630491492644701, −1.36875101064176717597572361048, −0.950199002863151206450412548067, −0.04569525081837175703058432778, 0.04569525081837175703058432778, 0.950199002863151206450412548067, 1.36875101064176717597572361048, 1.48952268650664630491492644701, 1.54805795712717115100405820466, 2.39917421385043750282690161181, 2.70411194709296404025987565066, 2.80728873216392143731892900783, 3.28786986920726198447903194643, 3.35805764807088626954579788717, 3.64266858952533784618349501352, 4.24717716778894650797233325681, 4.49799617493307901531764614797, 4.58491949272348302023670203975, 4.58995259995305007823911337123, 4.93195712800416955711357331986, 5.38126678357049588843816289882, 5.45073797576647302856782005838, 5.83815802319003284027986191977, 6.15659636866224041290773310214, 6.23181953872864823937099783579, 6.76040856783115788878324961051, 6.80992643578864394722428814452, 6.94029189952588883552514372375, 7.00879917454896232851109247840

Graph of the $Z$-function along the critical line