L(s) = 1 | − 2·3-s − 4·5-s + 2·9-s + 8·15-s + 12·19-s + 8·23-s − 6·27-s + 28·29-s + 20·43-s − 8·45-s − 32·47-s + 16·49-s − 4·53-s − 24·57-s + 12·67-s − 16·69-s + 8·71-s + 8·73-s + 11·81-s − 56·87-s − 48·95-s − 16·97-s − 20·101-s − 32·115-s + 16·121-s + 20·125-s + 127-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 1.78·5-s + 2/3·9-s + 2.06·15-s + 2.75·19-s + 1.66·23-s − 1.15·27-s + 5.19·29-s + 3.04·43-s − 1.19·45-s − 4.66·47-s + 16/7·49-s − 0.549·53-s − 3.17·57-s + 1.46·67-s − 1.92·69-s + 0.949·71-s + 0.936·73-s + 11/9·81-s − 6.00·87-s − 4.92·95-s − 1.62·97-s − 1.99·101-s − 2.98·115-s + 1.45·121-s + 1.78·125-s + 0.0887·127-s + ⋯ |
Λ(s)=(=((232⋅34)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((232⋅34)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
232⋅34
|
Sign: |
1
|
Analytic conductor: |
1414.33 |
Root analytic conductor: |
2.47639 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 232⋅34, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.368055916 |
L(21) |
≈ |
1.368055916 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C22 | 1+2T+2T2+2pT3+p2T4 |
good | 5 | D4 | (1+2T+6T2+2pT3+p2T4)2 |
| 7 | D4×C2 | 1−16T2+142T4−16p2T6+p4T8 |
| 11 | C4×C2 | 1−16T2+126T4−16p2T6+p4T8 |
| 13 | C22 | (1−6T2+p2T4)2 |
| 17 | D4×C2 | 1−20T2+358T4−20p2T6+p4T8 |
| 19 | D4 | (1−6T+42T2−6pT3+p2T4)2 |
| 23 | D4 | (1−4T+30T2−4pT3+p2T4)2 |
| 29 | D4 | (1−14T+102T2−14pT3+p2T4)2 |
| 31 | D4×C2 | 1−96T2+4046T4−96p2T6+p4T8 |
| 37 | D4×C2 | 1−76T2+2902T4−76p2T6+p4T8 |
| 41 | D4×C2 | 1−116T2+6406T4−116p2T6+p4T8 |
| 43 | D4 | (1−10T+106T2−10pT3+p2T4)2 |
| 47 | C2 | (1+8T+pT2)4 |
| 53 | D4 | (1+2T+102T2+2pT3+p2T4)2 |
| 59 | D4×C2 | 1−224T2+19486T4−224p2T6+p4T8 |
| 61 | D4×C2 | 1−172T2+13558T4−172p2T6+p4T8 |
| 67 | D4 | (1−6T+98T2−6pT3+p2T4)2 |
| 71 | D4 | (1−4T−34T2−4pT3+p2T4)2 |
| 73 | C2 | (1−2T+pT2)4 |
| 79 | D4×C2 | 1−128T2+7758T4−128p2T6+p4T8 |
| 83 | D4×C2 | 1−272T2+31774T4−272p2T6+p4T8 |
| 89 | C22 | (1−162T2+p2T4)2 |
| 97 | D4 | (1+8T+190T2+8pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.57992738761191657202383396808, −7.01588506882836258599405623548, −6.84775663259973337774910849398, −6.83332850925299462284188648999, −6.71368811642471717302431040962, −6.21752813489160752839231896883, −6.05194532522764385833944496954, −5.66507361989607478536249095400, −5.62772530751221583752710294768, −5.17121339150905459758234223314, −4.91999316105519288251409516356, −4.82030855904975558518792360855, −4.78066862679563805895927793679, −4.13399543037172595332335176138, −4.07998570040077863170079467191, −3.88490084153041906223180962243, −3.37140658726089546864194931169, −3.11232730619813553288894916702, −3.03795318017681575240638062702, −2.62124695530669829008843234732, −2.33752077307676352294556198400, −1.57529871934387436279978745277, −1.02081493097523189981406554888, −0.981546609604123035453254277812, −0.47925865927692612212045167709,
0.47925865927692612212045167709, 0.981546609604123035453254277812, 1.02081493097523189981406554888, 1.57529871934387436279978745277, 2.33752077307676352294556198400, 2.62124695530669829008843234732, 3.03795318017681575240638062702, 3.11232730619813553288894916702, 3.37140658726089546864194931169, 3.88490084153041906223180962243, 4.07998570040077863170079467191, 4.13399543037172595332335176138, 4.78066862679563805895927793679, 4.82030855904975558518792360855, 4.91999316105519288251409516356, 5.17121339150905459758234223314, 5.62772530751221583752710294768, 5.66507361989607478536249095400, 6.05194532522764385833944496954, 6.21752813489160752839231896883, 6.71368811642471717302431040962, 6.83332850925299462284188648999, 6.84775663259973337774910849398, 7.01588506882836258599405623548, 7.57992738761191657202383396808