Properties

Label 8-768e4-1.1-c1e4-0-3
Degree $8$
Conductor $347892350976$
Sign $1$
Analytic cond. $1414.33$
Root an. cond. $2.47639$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·9-s + 4·25-s − 20·49-s − 56·73-s + 27·81-s + 8·97-s − 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 52·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 24·225-s + ⋯
L(s)  = 1  + 2·9-s + 4/5·25-s − 2.85·49-s − 6.55·73-s + 3·81-s + 0.812·97-s − 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 4·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 8/5·225-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(1414.33\)
Root analytic conductor: \(2.47639\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 3^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.073935767\)
\(L(\frac12)\) \(\approx\) \(2.073935767\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 - p T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )^{2}( 1 + 2 T + p T^{2} )^{2} \)
11$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 + p T^{2} )^{4} \)
17$C_2$ \( ( 1 - p T^{2} )^{4} \)
19$C_2$ \( ( 1 - p T^{2} )^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{4} \)
29$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 10 T + p T^{2} )^{2}( 1 + 10 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + p T^{2} )^{4} \)
41$C_2$ \( ( 1 - p T^{2} )^{4} \)
43$C_2$ \( ( 1 - p T^{2} )^{4} \)
47$C_2$ \( ( 1 + p T^{2} )^{4} \)
53$C_2^2$ \( ( 1 + 94 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 + p T^{2} )^{4} \)
67$C_2$ \( ( 1 - p T^{2} )^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2$ \( ( 1 + 14 T + p T^{2} )^{4} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )^{2}( 1 + 10 T + p T^{2} )^{2} \)
83$C_2^2$ \( ( 1 - 134 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 - p T^{2} )^{4} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.32570669545723150595181355179, −7.16711275172875094805076375514, −7.11533425774731656430088601478, −6.88286165107540979374100367524, −6.37453156957916658313728768998, −6.33069846030775356871813541348, −6.07465737404072177471866593433, −5.76290138329858101247113134895, −5.74305601871394028333282368187, −5.09143092347430032188987251817, −4.89664487839473580130220161652, −4.72500145604183245889614597180, −4.64500702455603336864548345378, −4.41892135810656244908119157414, −3.83292364910677482169371624067, −3.75655952466733903797859199920, −3.64304143512017664889994801086, −3.03813145797375299224413978357, −2.89904344157900136338280407218, −2.54947405039769471395279578509, −2.18484952672149358638869733291, −1.49911110788580926479746368750, −1.42884296640537046417987972835, −1.36425066558286993075187059679, −0.36826834496503402790335027340, 0.36826834496503402790335027340, 1.36425066558286993075187059679, 1.42884296640537046417987972835, 1.49911110788580926479746368750, 2.18484952672149358638869733291, 2.54947405039769471395279578509, 2.89904344157900136338280407218, 3.03813145797375299224413978357, 3.64304143512017664889994801086, 3.75655952466733903797859199920, 3.83292364910677482169371624067, 4.41892135810656244908119157414, 4.64500702455603336864548345378, 4.72500145604183245889614597180, 4.89664487839473580130220161652, 5.09143092347430032188987251817, 5.74305601871394028333282368187, 5.76290138329858101247113134895, 6.07465737404072177471866593433, 6.33069846030775356871813541348, 6.37453156957916658313728768998, 6.88286165107540979374100367524, 7.11533425774731656430088601478, 7.16711275172875094805076375514, 7.32570669545723150595181355179

Graph of the $Z$-function along the critical line