Properties

Label 8-768e4-1.1-c1e4-0-12
Degree $8$
Conductor $347892350976$
Sign $1$
Analytic cond. $1414.33$
Root an. cond. $2.47639$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·9-s − 4·25-s + 20·49-s + 56·73-s + 27·81-s + 8·97-s − 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 52·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s − 24·225-s + ⋯
L(s)  = 1  + 2·9-s − 4/5·25-s + 20/7·49-s + 6.55·73-s + 3·81-s + 0.812·97-s − 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 4·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s − 8/5·225-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(1414.33\)
Root analytic conductor: \(2.47639\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 3^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(4.147871534\)
\(L(\frac12)\) \(\approx\) \(4.147871534\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 - p T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 + p T^{2} )^{4} \)
17$C_2$ \( ( 1 - p T^{2} )^{4} \)
19$C_2$ \( ( 1 - p T^{2} )^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{4} \)
29$C_2^2$ \( ( 1 + 50 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 + p T^{2} )^{4} \)
41$C_2$ \( ( 1 - p T^{2} )^{4} \)
43$C_2$ \( ( 1 - p T^{2} )^{4} \)
47$C_2$ \( ( 1 + p T^{2} )^{4} \)
53$C_2^2$ \( ( 1 - 94 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 + p T^{2} )^{4} \)
67$C_2$ \( ( 1 - p T^{2} )^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 58 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 134 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 - p T^{2} )^{4} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.52835756594407838306636187986, −7.23716426122048259564048818696, −6.83324376074904436367170150595, −6.82803893839965645554382810325, −6.48524605960970495130017039276, −6.32327614962902531203610541779, −6.22281190656349411477149969298, −5.73428704221590813478382901402, −5.36615790469085580561597214526, −5.25895141410010010667904006152, −5.19522761895446153394699703063, −4.70513787943132556190126113640, −4.58051703211354682183803819234, −4.06847856522409827648720879197, −4.03924374989051954847480539257, −3.74800611960441040979023191349, −3.69222820900469522900583935906, −3.17149221172108981476098577944, −2.83838686951482260099094827100, −2.27893758085900756219810726486, −2.19664772209953578996182997816, −1.94579469139449183739562668870, −1.41647093101350920286495424003, −0.912602202984102835619506873527, −0.65620606335608006943425025629, 0.65620606335608006943425025629, 0.912602202984102835619506873527, 1.41647093101350920286495424003, 1.94579469139449183739562668870, 2.19664772209953578996182997816, 2.27893758085900756219810726486, 2.83838686951482260099094827100, 3.17149221172108981476098577944, 3.69222820900469522900583935906, 3.74800611960441040979023191349, 4.03924374989051954847480539257, 4.06847856522409827648720879197, 4.58051703211354682183803819234, 4.70513787943132556190126113640, 5.19522761895446153394699703063, 5.25895141410010010667904006152, 5.36615790469085580561597214526, 5.73428704221590813478382901402, 6.22281190656349411477149969298, 6.32327614962902531203610541779, 6.48524605960970495130017039276, 6.82803893839965645554382810325, 6.83324376074904436367170150595, 7.23716426122048259564048818696, 7.52835756594407838306636187986

Graph of the $Z$-function along the critical line